23 resultados para Subterranean Clover
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Urana is a hardseeded, moderately early flowering F-5-derived crossbred subterranean clover of var. subterraneum [( Katz. et Morley) Zohary and Heller] developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It has been selected for release as a new cultivar on the basis of its high winter and spring herbage production and overall field performance relative to other subterranean clovers of similar maturity. Urana is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 5 - 7 months, which extends into mid-October. Urana is suited to phase farming and crop rotations. It has been granted Plant Breeders Rights in Australia.
Resumo:
Coolamon is a mid-season to late-season flowering F4-derived crossbred subterranean clover of var. subterraneum, developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a replacement for Junee and has been selected for release on the basis of its greater herbage production and persistence, and its resistance to both known races of clover scorch. Coolamon is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 6.5-8 months that extends into November. Coolamon is best suited to phase farming and permanent pasture systems. It can also be used in cropping rotations, but at least 2 years of pasture are required between crops. Coolamon has been granted Plant Breeders Rights in Australia.
Resumo:
Izmir is a hardseeded, early flowering, subterranean clover of var. subterraneum (Katz. et Morley) Zohary and Heller collected from Turkey and developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a more hardseeded replacement for Nungarin and best suited to well-drained, moderately acidic soils in areas with a growing season of less than 4.5 months. Izmir seed production and regeneration densities in 3-year pasture phases were similar to Nungarin in 21 trials across southern Australia, but markedly greater in years following a crop or no seed set. Over all measurements, Izmir produced 10% more winter herbage and 7% more spring herbage than Nungarin. Its greater hardseededness and good seed production, makes it better suited to cropping rotations than Nungarin. Softening of Izmir hard seeds occurs later in the summer–autumn period than Nungarin, giving it slightly greater protection from seed losses following false breaks to the season. Izmir is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. Izmir has been granted Plant Breeders Rights in Australia.
Resumo:
Fifteen years ago subterranean clover (Trifolium subterraneum) and annual medics (Medicago spp.) dominated annual pasture legume sowings in southern Australia, while limited pasture legume options existed for cropping areas of subtropical Australia. Since then a number of sustainability and economic challenges to existing farming systems have emerged, exposing shortcomings in these species and the lack of legume biodiversity. Public breeding institutions have responded to these challenges by developing 58 new annual and short-lived perennial pasture legumes with adaptation to both existing and new farming systems. This has involved commercialisation of new species and overcoming deficiencies in traditional species. Traits incorporated in legumes of Mediterranean Basin origin for the Mediterranean, temperate and southern subtropical climates of Australia include deeper root systems, protection from false breaks (germination-inducing rainfall events followed by death from drought), a range of hardseed levels, acid-soil tolerant root nodule symbioses, tolerance to pests and diseases and provision of lower cost seed through ease of seed harvesting and processing. Ten new species, French serradella (Ornithopus sativus), biserrula (Biserrula pelecinus), sulla (Hedysarum coronarium), gland (Trifolium glanduliferum), arrowleaf (Trifolium vesiculosum), eastern star (Trifolium dasyurum) and crimson (Trifolium incarnatum) clovers and sphere (Medicago sphaerocarpos), button (Medicago orbicularis) and hybrid disc (Medicago tornata x Medicago littoralis) medics have been commercialised. Improved cultivars have also been developed of subterranean (T. subterraneum), balansa (Trifolium michelianum), rose (Trifolium hirtum), Persian (Trifolium resupinatum) and purple (Trifolium purpureum) clovers, burr (Medicago polymorpha), strand (M. littoralis), snail (Medicago scutellata) and barrel (Medicago truncatula) medics and yellow serradella (Ornithopus compressus). New tropical legumes for pasture phases in subtropical cropping areas include butterfly pea (Clitoria ternatea), burgundy bean (Macroptilium bracteatum) and perennial lablab (Lablab purpureus). Other species and cultivars of Mediterranean species are likely to be released soon. The contributions of genetic resources, rhizobiology, pasture ecology and agronomy, plant pathology, entomology, plant chemistry and animal science have been paramount to this success. A farmer survey in Western Australia has shown widespread adoption of the new pasture legumes, while adoption of new tropical legumes has also been high in cropping areas of the subtropics. This trend is likely to increase due to the increasing cost of inorganic nitrogen, the need to combat herbicide-resistant crop weeds and improved livestock prices. Mixtures of these legumes allows for more robust pastures buffered against variable seasons, soils, pests, diseases and management decisions. This paper discusses development of the new pasture legumes, their potential use and deficiencies in the current suite. 'Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
We present here the complete genome sequences of a novel polerovirus from Trifolium subterraneum (subterranean clover) and Cicer arietinum (chickpea) and compare these to a partial viral genome sequence obtained from Macroptilium lathyroides (phasey bean). We propose the name phasey bean mild yellows virus for this novel polerovirus.
Resumo:
White clover (Trifolium repens L.) is an obligate outbreeding allotetraploid forage legume. Gene-associated SNPs provide the optimum genetic system for improvement of such crop species. An EST resource obtained from multiple cDNA libraries constructed from numerous genotypes of a single cultivar has been used for in silico SNP discovery and validation. A total of 58 from 236 selected sequence clusters (24.5%) were fully validated as containing polymorphic SNPs by genotypic analysis across the parents and progeny of several two-way pseudo-testcross mapping families. The clusters include genes belonging to a broad range of predicted functional categories. Polymorphic SNP-containing ESTs have also been used for comparative genomic analysis by comparison with whole genome data from model legume species, as well as Arabidopsis thaliana. A total of 29 (50%) of the 58 clusters detected putative ortholoci with known chromosomal locations in Medicago truncatula, which is closely related to white clover within the Trifolieae tribe of the Fabaceae. This analysis provides access to translational data from model species. The efficiency of in silico SNP discovery in white clover is limited by paralogous and homoeologous gene duplication effects, which are resolved unambiguously by the transmission test. This approach will also be applicable to other agronomically important cross-pollinating allopolyploid plant species.
Resumo:
Cat’s claw creeper, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation in coastal Queensland and New South Wales, Australia. In densely infested areas, it smothers standing vegetation, including large trees, and causes canopy collapse. Quantitative data on the ecology of this invasive vine are generally lacking. The present study examines the underground tuber traits of M. unguis-cati and explores their links with aboveground parameters at five infested sites spanning both riparian and inland vegetation. Tubers were abundant in terms of density (~1000 per m2), although small in size and low in level of interconnectivity. M. unguis-cati also exhibits multiple stems per plant. Of all traits screened, the link between stand (stem density) and tuber density was the most significant and yielded a promising bivariate relationship for the purposes of estimation, prediction and management of what lies beneath the soil surface of a given M. unguis-cati infestation site. The study also suggests that new recruitment is primarily from seeds, not from vegetative propagation as previously thought. The results highlight the need for future biological-control efforts to focus on introducing specialist seed- and pod-feeding insects to reduce seed-output.
Resumo:
The effects on yield, botanical composition and persistence, of using a variable defoliation schedule as a means of optimising the quality of the tall fescue component of simple and complex temperate pasture mixtures in a subtropical environment was studied in a small plot cutting experiment at Gatton Research Station in south-east Queensland. A management schedule of 2-, 3- and 4-weekly defoliations in summer, autumn and spring and winter, respectively, was imposed on 5 temperate pasture mixtures: 2 simple mixtures including tall fescue (Festuca arundinacea) and white clover (Trifolium repens); 2 mixtures including perennial ryegrass (Lolium perenne), tall fescue and white clover; and a complex mixture, which included perennial ryegrass, tall fescue, white, red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus). Yield from the variable cutting schedule was 9% less than with a standard 4-weekly defoliation. This loss resulted from reductions in both the clover component (13%) and cumulative grass yield (6%). There was no interaction between cutting schedule and sowing mixture, with simple and complex sowing mixtures reacting in a similar manner to both cutting schedules. The experiment also demonstrated that, in complex mixtures, the cutting schedules used failed to give balanced production from all sown components. This was especially true of the grass and white clover components of the complex mixture, as chicory and Persian clover components dominated the mixtures, particularly in the first year. Quality measurements (made only in the final summer) suggested that variable management had achieved a quality improvement with increases in yields of digestible crude protein (19%) and digestible dry matter (9%) of the total forage produced in early summer. The improvements in the yields of digestible crude protein and digestible dry matter of the tall fescue component in late summer were even greater (28 and 19%, respectively). While advantages at other times of the year were expected to be smaller, the data suggested that the small loss in total yield was likely to be offset by increases in digestibility of available forage for grazing stock, especially in the critical summer period.
Resumo:
In the subtropics of Australia, the ryegrass component of irrigated perennial ryegrass (Lolium perenne) - white clover (Trifolium repens) pastures declines by approximately 40% in the summer following establishment, being replaced by summer-active C4 grasses. Tall fescue (Festuca arundinacea) is more persistent than perennial ryegrass and might resist this invasion, although tall fescue does not compete vigorously as a seedling. This series of experiments investigated the influence of ryegrass and tall fescue genotype, sowing time and sowing mixture as a means of improving tall fescue establishment and the productivity and persistence of tall fescue, ryegrass and white clover-based mixtures in a subtropical environment. Tall fescue frequency at the end of the establishment year decreased as the number of companion species sown in the mixture increased. Neither sowing mixture combinations nor sowing rates influenced overall pasture yield (of around 14 t/ha) in the establishment year but had a significant effect on botanical composition and component yields. Perennial ryegrass was less competitive than short-rotation ryegrass, increasing first-year yields of tall fescue by 40% in one experiment and by 10% in another but total yield was unaffected. The higher establishment-year yield (3.5 t/ha) allowed Dovey tall fescue to compete more successfully with the remaining pasture components than Vulcan (1.4 t/ha). Sowing 2 ryegrass cultivars in the mixture reduced tall fescue yields by 30% compared with a single ryegrass (1.6 t/ha), although tall fescue alone achieved higher yields (7.1 t/ha). Component sowing rate had little influence on composition or yield. Oversowing the ryegrass component into a 6-week-old sward of tall fescue and white clover improved tall fescue, white clover and overall yields in the establishment year by 83, 17 and 11%, respectively, but reduced ryegrass yields by 40%. The inclusion of red (T. pratense) and Persian (T. resupinatum) clovers and chicory (Cichorium intybus) increased first-year yields by 25% but suppressed perennial grass and clover components. Yields were generally maintained at around 12 t/ha/yr in the second and third years, with tall fescue becoming dominant in all 3 experiments. The lower tall fescue seeding rate used in the first experiment resulted in tall fescue dominance in the second year following establishment, whereas in Experiments 2 and 3 dominance occurred by the end of the first year. Invasion by the C4 grasses was relatively minor (<10%) even in the third year. As ryegrass plants died, tall fescue and, to a lesser extent, white clover increased as a proportion of the total sward. Treatment effects continued into the second, but rarely the third, year and mostly affected the yield of one of the components rather than total cumulative yield. Once tall fescue became dominant, it was difficult to re-introduce other pasture components, even following removal of foliage and moderate renovation. Severe renovation (reducing the tall fescue population by at least 30%) seems a possible option for redressing this situation.
Resumo:
Discusses: Economic importance of subterranean termites, feeding habits and behaviour, termite baiting concepts, termite aggregation (in ground and aboveground), placing baits, commercial baiting systems.
Resumo:
Describes: the Queensland Building Act, how termites infest buildings, prevention, being aware of the risks, regular inspections, precaution, eliminate conditions that favour infestation, termite resistant timbers, physical barriers, chemical barriers, integrated management for prevention and treatment, treating active infestation by professionals.
Resumo:
Describes the termites found in Queensland, the termite colony, nests, feeding habits and behaviour, natural enemies, distribution and importance.
Resumo:
Two field trials were conducted with untreated coconut wood (“cocowood”) of varying densities against the subterranean termites Coptotermes acinaciformis (Froggatt) and Mastotermes darwiniensis Froggatt in northern Queensland, Australia. Both trials ran for 16 weeks during the summer months. Cocowood densities ranged from 256 kg/m3 to 1003 kg/m3, and the test specimens were equally divided between the two termite trial sites. Termite pressure was high at both sites where mean mass losses in the Scots pine sapwood feeder specimens were: 100% for C. acinaciformis and 74.7% for M. darwiniensis. Termite species and cocowood density effects were significant. Container and position effects were not significant. Mastotermes darwiniensis fed more on the cocowood than did C. acinaciformis despite consuming less of the Scots pine than did C. acinaciformis. Overall the susceptibility of cocowood to C. acinaciformis and M. darwiniensis decreases with increasing density, but all densities (apart from a few at the high end of the density range) could be considered susceptible, particularly to M. darwiniensis. Some deviations from this general trend are discussed as well as implications for the utilisation of cocowood as a building resource.
Resumo:
The highly persistent cyclodiene (organochlorine) insecticides (aldrin, dieldrin, chlordane and heptachlor), the main termiticides used in Australia for 30 years, were withdrawn from use in most of Australia on 30 June 1995. Alternative strategies for subterranean termite management in buildings and other structures had been under development, well before this withdrawal. Here we focus on these and subsequent developments in subterranean termite management, relevant to Queensland, including a national survey, relevant building regulations, approvals and changes in the Australian Standards on termite management. Developments including a national training and competency-based-licensing system for pest managers, insurance of dwellings against termite damage and several alternative termite management strategies are discussed. An integrated approach to termite management is the likely direction for the future in Australia, minimising reliance on chemical sprays and drenches. There will be an increased need for physical barriers in improved building design and reliable preventative and remedial treatments involving bait technology. The need for research on termite biology and, in particular, foraging behavior is emphasized yet again.
Resumo:
This study reports on the effect of oversowing perennial ryegrass (Lolium perenne L.) into a degraded perennial ryegrass and white clover (Trifolium repens L.) pasture to extend its productive life using various intensities of seedbed preparation. Sites in New South Wales (NSW), Western Australia (WA), South Australia (SA) and Tasmania (Tas.) were chosen by a local group of farmers as being degraded and in need of renovation. Control (nil renovation) and medium (mulch and graze, spray with glyphosphate and sow) renovation treatments were common to all sites whereas minimum (mulch and graze, and sow) and full seedbed (graze and spray with glyphosphate and then full seedbed preparation) renovation were imposed only at some sites. Plots varied in area from 0.14 to 0.50 ha, and were renovated then sown in March or April 2000 and subsequently grazed by dairy cows. Pasture utilisation was estimated from pre- and post-grazing pasture mass assessed by a rising plate pasture meter. Utilised herbage mass of the renovated treatments was significantly higher than control plots in period 1 (planting to August) and 2 (first spring) at the NSW site only. There was no difference among treatments in period 3 (first summer) at any site, and only at the WA and NSW sites in period 4 (March to July 2001) was there a response to renovation. As a result, renovation at the NSW site only significantly increased ryegrass utilisation over the whole experimental period. Ryegrass plant density was higher at the NSW, WA (excluding minimum renovation) and Tas. (excluding full renovation) sites 6 months after renovation but this was only sustained for 12 months for the minimum and medium treatments at the NSW and Tas. sites, respectively, presumably due to reduced competition from naturalised C4 summer grasses [kikuyu (Pennisetum clandestinum) and paspalum (Paspalum dilatatum)] in NSW At the NSW, WA and SA sites, the original ryegrass plant density was low (<35 plants/m2) compared with the Tas. site where density was around 185/m2. The response to renovating a degraded perennial ryegrass pasture varied between sites in Australia. Positive responses were generally small and were most consistent where renovation removed competing C4 summer grasses.