36 resultados para Subinertial frequencies
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In Australia, along with many other parts of the world, fumigation with phosphine is a vital component in controlling stored grain insect pests. However, resistance is a factor that may limit the continued efficacy of this fumigant. While strong resistance to phosphine has been identified and characterised, very little information is available on the causes of its development and spread. Data obtained from a unique national resistance monitoring and management program were analysed, using Bayesian hurdle modelling, to determine which factors may be responsible. Fumigation in unsealed storages, combined with a high frequency of weak resistance, were found to be the main criteria that led to the development of strong resistance in Sitophilus oryzae. Independent development, rather than gene flow via migration, appears to be primarily responsible for the geographic incidence of strong resistance to phosphine in S. oryzae. This information can now be utilised to direct resources and education into those areas at high risk and to refine phosphine resistance management strategies.
Resumo:
This paper describes the fishery and reproductive biology for Linuparus trigonus obtained from trawl fishermen operating off Queensland’s east coast, Australia. The smallest mature female lobster measured 59.8 mm CL, however, 50% maturity was reached between 80 and 85 mm CL. Brood fecundity (BF) was size dependent and ranged between 19,287 and 100,671 eggs in 32 females from 59.8 to 104.3 mm CL. The relationship was best described by the power equation BF = 0.1107*CL to the power of 2.9241 (r to the power of 2 = 0:74). Egg size ranged from 0.96 to 1.12 mm in diameter (mean = 1:02 (+or-) 0:01 mm). Egg weight and size were independent of lobster size. Length frequencies displayed multi-modal distributions.The percentage of female to male lobsters was relatively stable for small size classes (30 to 70 mm CL; 50.0 to 63.6% females), but female proportions rose markedly between 75 and 90 mm (72.2 to 85.4%) suggesting that at the onset of sexual maturity female growth rates are reduced. In size classes greater than 95 mm, males were numerically dominant. A description of the L. trigonus fishery in Queensland is also detailed.
Resumo:
The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus. Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high (L. erythropterus, 0.95 and L. malabaricus, 0.97), as was intraspecific sequence divergence, (L. erythropterus, 0.0-12.5% and L. malabaricus, 0.0-9.5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape (L. malabaricus) or between Kupang and Australian Timor Sea (L. erythropertus). The allozyme analyses revealed similar boundaries for L. erythropterus. Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.
Resumo:
BACKGROUND: Glyphosate-resistant cotton varieties are an important tool for weed control in Australian cotton production systems. To increase the sustainability of this technology and to minimise the likelihood of resistance evolving through its use, weed scientists, together with herbicide regulators, industry representatives and the technology owners, have developed a framework that guides the use of the technology. Central to this framework is a crop management plan (CMP) and grower accreditation course. A simulation model that takes into account the characteristics of the weed species, initial gene frequencies and any associated fitness penalties was developed to ensure that the CMP was sufficiently robust to minimise resistance risks. RESULTS: The simulations showed that, when a combination of weed control options was employed in addition to glyphosate, resistance did not evolve over the 30 year period of the simulation. CONCLUSION: These simulations underline the importance of maintaining an integrated system for weed management to prevent the evolution of glyphosate resistance, prolonging the use of glyphosate-resistant cotton.
Resumo:
Table beet production in the Lockyer Valley of south-eastern Queensland is known to be adversely affected by soilborne root disease from infection by Pythium spp. However, little is known regarding the species or genotypes that are the causal agents of both pre- and post-emergence damping off. Based on RFLP analysis with HhaI, HinfI and MboI of the PCR amplified ITS region DNA from soil and diseased plant samples, the majority of 130 Pythium isolates could be grouped into three genotypes, designated LVP A, LVP B and LVP C. These groups comprised 43, 41 and 7% of all isolates, respectively. Deoxyribonucleic acid sequence analysis of the ITS region indicated that LVP A was a strain of Pythium aphanidermatum, with greater than 99% similarity to the corresponding P. aphanidermatum sequences from the publicly accessible databases. The DNA sequences from LVP B and LVP C were most closely related to P. ultimum and P. dissotocum, respectively. Lower frequencies of other distinct isolates with unique RFLP patterns were also obtained with high levels of similarity (>97%) to P. heterothallicum, P. periplocum and genotypes of P. ultimum other than LVP B. Inoculation trials of 1- and 4-week-old beet seedlings indicated that compared with isolates of the LVP B genotype, a higher frequency of LVP A isolates caused disease. Isolates with the LVP A, LVP B and LVP C genotypes were highly sensitive to the fungicide Ridomil MZ, which suppressed radial growth on V8 agar between approximately four and thirty fold at 5 μg/mL metalaxyl and 40 μg/mL mancozeb, a concentration far lower than the recommended field application rate.
Resumo:
Resistance against synthetic pyrethroid (SP) products for the control of cattle ticks in Australia was detected in the field in 1984, within a very short time of commercial introduction. We have identified a mutation in the domain II S4-5 linker of the para-sodium channel that is associated with resistance to SPs in the cattle tick Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine mutation at position 190 in the R. microplus sequence AF134216, results in an amino acid substitution from leucine in the susceptible strain to isoleucine in the resistant strain. A similar mutation has been shown to confer SP resistance in the whitefly, Bemisia tabaci, but has not been described previously in ticks. A diagnostic quantitative PCR assay has been developed using allele-specific Taqman® minor groove-binding (MGB) probes. Using the assay to screen field and laboratory populations of ticks showed that homozygote allelic frequencies correlated highly with the survival percentage at the discriminating concentration of cypermethrin.
Resumo:
Understanding plant response to herbivory facilitates the prioritisation of guilds of specialist herbivores as biological control agents based on their potential impacts. Prickly acacia (Acacia nilotica ssp. indica) is a weed of national significance in Australia and is a target for biological control. Information on the susceptibility of prickly acacia to herbivory is limited, and there is no information available on the plant organ (i.e. leaf, shoot and root in isolation or in combination) most susceptible to herbivory. We evaluated the ability of prickly acacia seedlings, to respond to different types of simulated herbivory (defoliation, shoot damage, root damage and combinations), at varying frequencies (no herbivory, single, two and three events of herbivory) to identify the type and frequency of herbivory that will be required to reduce the growth and vigour. Defoliation and shoot damage, individually, had a significant negative impact on prickly acacia seedlings. For the defoliation to be effective, more than two defoliation events were required, whereas a single bout of shoot damage was enough to cause a significant reduction in plant vigour. A combination of defoliation + shoot damage had the greatest negative impact. The study highlights the need to prioritise specialist leaf and shoot herbivores as potential biological control agents for prickly acacia.
Resumo:
In 1313 scats of the spotted-tailed quoll Dasyurus maculatus, collected over 5 years from the gorge country of north-eastern New South Wales, the most frequent and abundant items were derived from mammals and a restricted set of insect orders. These quolls also ate river-associated items: waterbirds, eels, crayfish, aquatic molluscs and even frogs. Macropods contributed most of the mammal items, with possums, gliders and rodents also being common. Some food, particularly from macropods and lagomorphs, had been scavenged (as shown by fly larvae). The most frequent invertebrates were three orders of generally large insects Coleoptera, Hemiptera and Orthoptera, which were most frequent in summer and almost absent in winter scats. Monthly mean numbers of rodent and small dasyurid items per scat were inversely related to these large insects in scats. The numbers of reptile items were inversely related to the numbers of mammal (especially arboreal and small terrestrial mammal) items per scat, thus types of items interacted in their occurrences in monthly scat samples. Frequencies of most vertebrate items showed no seasonal, but much year-to-year, variation. This quoll population ate four main types of items, each requiring different skills to obtain: they hunted arboreal marsupials (possibly up trees), terrestrial small mammals and reptiles (on the ground), and seasonally available large insects (on trees or the ground), and scavenged carcases, mostly of large mammals but also birds and fishes (wherever they could find them).
Resumo:
Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n= 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n= 4x = 28, AABB) with Aegilops tauschii Coss. (2n= 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F-1 hybrids with Janz, a susceptible bread wheat, were tested and the F(1)s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F(1)s and F(2)s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.
Resumo:
Pre-release evaluation of the efficacy of biological control agents is often not possible in the case of many invasive species targeted for biocontrol. In such circumstances simulating herbivory could yield significant insights into plant response to damage, thereby improving the efficiency of agent prioritisation, increasing the chances of regulating the performance of invasive plants through herbivory and minimising potential risks posed by release of multiple herbivores. We adopted this approach to understand the weaknesses herbivores could exploit, to manage the invasive liana, Macfadyena unguis-cati. We simulated herbivory by damaging the leaves, stem, root and tuber of the plant, in isolation and in combination. We also applied these treatments at multiple frequencies. Plant response in terms of biomass allocation showed that at least two severe defoliation treatments were required to diminish this liana's climbing habit and reduce its allocation to belowground tuber reserves. Belowground damage appears to have negligible effect on the plant's biomass production and tuber damage appears to trigger a compensatory response. Plant response to combinations of different types of damage did not differ significantly to that from leaf damage. This suggests that specialist herbivores in the leaf-feeding guild capable of removing over 50% of the leaf tissue may be desirable in the biological control of this invasive species.
Resumo:
Surface losses of nitrogen from horticulture farms in coastal Queensland, Australia, may have the potential to eutrophy sensitive coastal marine habitats nearby. A case-study of the potential extent of such losses was investigated in a coastal macadamia plantation. Nitrogen losses were quantified in 5 consecutive runoff events during the 13-month study. Irrigation did not contribute to surface flows. Runoff was generated by storms at combined intensities and durations that were 20–40 mm/h for >9 min. These intensities and durations were within expected short-term (1 year) and long-term (up to 20 years) frequencies of rainfall in the study area. Surface flow volumes were 5.3 ± 1.1% of the episodic rainfall generated by such storms. Therefore, the largest part of each rainfall event was attributed to infiltration and drainage in this farm soil (Kandosol). The estimated annual loss of total nitrogen in runoff was 0.26 kg N/ha.year, representing a minimal loading of nitrogen in surface runoff when compared to other studies. The weighted average concentrations of total sediment nitrogen (TSN) and total dissolved nitrogen (TDN) generated in the farm runoff were 2.81 ± 0.77% N and 1.11 ± 0.27 mg N/L, respectively. These concentrations were considerably greater than ambient levels in an adjoining catchment waterway. Concentrations of TSN and TDN in the waterway were 0.11 ± 0.02% N and 0.50 ± 0.09 mg N/L, respectively. The steep concentration gradient of TSN and TDN between the farm runoff and the waterway demonstrated the occurrence of nutrient loading from the farming landscapes to the waterway. The TDN levels in the stream exceeded the current specified threshold of 0.2–0.3 mg N/L for eutrophication of such a waterway. Therefore, while the estimate of annual loading of N from runoff losses was comparatively low, it was evident that the stream catchment and associated agricultural land uses were already characterised by significant nitrogen loadings that pose eutrophication risks. The reported levels of nitrogen and the proximity of such waterways (8 km) to the coastline may have also have implications for the nearshore (oligotrophic) marine environment during periods of turbulent flow.
Resumo:
Large fruited spotted gum eucalypt Corymbia henryi occurs sympatrically with small fruited spotted gum Corymbia citriodora subspecies variegata over a large portion of its range on the east coast of Australia. The two taxa are interfertile, have overlapping flowering times and share a common set of insect and vertebrate pollinators. Previous genetic analysis of both taxa from two geographically remote sites suggested that the two were morphotypes rather than genetically distinct species. In this study we further explore this hypothesis of genic species by expanding sampling broadly through their sympatric locations and examine local-scale spatial genetic structure in stands that differ in species and age composition. Delineation of populations at five microsatellite loci, using an individual-based approach and Bayesian modelling, as well as clustering of individuals based on allele frequencies showed the two species to be molecularly homogeneous. Genetic structure aligned largely with geographic areas of origin, and followed an isolation-by-distance model, where proximal populations were generally less differentiated than more distant ones. At the stand level, spotted gums also generally showed little structure consistent with the high levels of gene flow inferred across the species range. Disturbances in the uniformity of structuring were detected, however, and attributed to localised events giving rise to even aged stands, probably due to regeneration from a few individuals following fire.
Resumo:
Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.
Resumo:
Microsatellite markers were used to examine spatio-temporal genetic variation in the endangered eastern freshwater cod Maccullochella ikei in the Clarence River system, eastern Australia. High levels of population structure were detected. A model-based clustering analysis of multilocus genotypes identified four populations that were highly differentiated by F-statistics (FST = 0· 09 − 0· 49; P < 0· 05), suggesting fragmentation and restricted dispersal particularly among upstream sites. Hatchery breeding programmes were used to re-establish locally extirpated populations and to supplement remnant populations. Bayesian and frequency-based analyses of hatchery fingerling samples provided evidence for population admixture in the hatchery, with the majority of parental stock sourced from distinct upstream sites. Comparison between historical and contemporary wild-caught samples showed a significant loss of heterozygosity (21%) and allelic richness (24%) in the Mann and Nymboida Rivers since the commencement of stocking. Fragmentation may have been a causative factor; however, temporal shifts in allele frequencies suggest swamping with hatchery-produced M. ikei has contributed to the genetic decline in the largest wild population. This study demonstrates the importance of using information on genetic variation and population structure in the management of breeding and stocking programmes, particularly for threatened species.
Resumo:
The common blacktip shark (Carcharhinus limbatus) and the Australian blacktip shark (C. tilstoni) are morphologically similar species that co-occur in subtropical and tropical Australia. In striking contrast to what has been previously reported, we demonstrate that the common blacktip shark is not rare in northern Australia but occurs in approximately equal frequencies with the Australian blacktip shark. Management of shark resources in northern Australia needs to take account of this new information. Species identification was performed using nucleotide sequences of the control, NADH dehydrogenase subunit 4 (ND4) and cytochrome oxidase I (COI) regions in the mitochondrial genome. The proportion of overall genetic variation (FST) between the two species was small (0.042, P < 0.01) based on allele frequencies at five microsatellite loci. We confirm that a third blacktip species (C. amblyrhynchoides, graceful shark) is closely related to C. tilstoni and C. limbatus and can be distinguished from them on the basis of mtDNA sequences from two gene regions. The Australian blacktip shark (C. tilstoni) was not encountered among 20 samples from central Indonesia that were later confirmed to be common blacktip and graceful sharks. Fisheries regulators urgently need new information on life history, population structure and morphological characters for species identification of blacktip shark species in Australia.