12 resultados para Stochastic dynamic programming
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter.
Resumo:
1. Weed eradication efforts often must be sustained for long periods owing to the existence of persistent seed banks, among other factors. Decision makers need to consider both the amount of investment required and the period over which investment must be maintained when determining whether to commit to (or continue) an eradication programme. However, a basis for estimating eradication programme duration based on simple data has been lacking. Here, we present a stochastic dynamic model that can provide such estimates. 2. The model is based upon the rates of progression of infestations from the active to the monitoring state (i.e. no plants detected for at least 12 months), rates of reversion of infestations from monitoring to the active state and the frequency distribution of time since last detection for all infestations. Isoquants that illustrate the combinations of progression and reversion parameters corresponding to eradication within different time frames are generated. 3. The model is applied to ongoing eradication programmes targeting branched broomrape Orobanche ramosa and chromolaena Chromolaena odorata. The minimum periods in which eradication could potentially be achieved were 22 and 23 years, respectively. On the basis of programme performance until 2008, however, eradication is predicted to take considerably longer for both species (on average, 62 and 248 years, respectively). Performance of the branched broomrape programme could be best improved through reducing rates of reversion to the active state; for chromolaena, boosting rates of progression to the monitoring state is more important. 4. Synthesis and applications. Our model for estimating weed eradication programme duration, which captures critical transitions between a limited number of states, is readily applicable to any weed.Aparticular strength of the method lies in its minimal data requirements. These comprise estimates of maximum seed persistence and infested area, plus consistent annual records of the detection (or otherwise) of the weed in each infestation. This work provides a framework for identifying where improvements in management are needed and a basis for testing the effectiveness of alternative tactics. If adopted, our approach should help improve decision making with regard to eradication as a management strategy.
Resumo:
Two prerequisites for realistically embarking upon an eradication programme are that cost-benefit analysis favours this strategy over other management options and that sufficient resources are available to carry the programme through to completion. These are not independent criteria, but it is our view that too little attention has been paid to estimating the investment required to complete weed eradication programmes. We deal with this problem by using a two-pronged approach: 1) developing a stochastic dynamic model that provides an estimation of programme duration; and 2) estimating the inputs required to delimit a weed incursion and to prevent weed reproduction over a sufficiently long period to allow extirpation of all infestations. The model is built upon relationships that capture the time-related detection of new infested areas, rates of progression of infestations from the active to the monitoring stage, rates of reversion of infestations from the monitoring to active stage, and the frequency distribution of time since last detection for all infestations. This approach is applied to the branched broomrape (Orobanche ramosa) eradication programme currently underway in South Australia. This programme commenced in 1999 and currently 7450 ha are known to be infested with the weed. To date none of the infestations have been eradicated. Given recent (2008) levels of investment and current eradication methods, model predictions are that it would take, on average, an additional 73 years to eradicate this weed at an average additional cost (NPV) of $AU67.9m. When the model was run for circumstances in 2003 and 2006, the average programme duration and total cost (NPV) were predicted to be 159 and 94 years, and $AU91.3m and $AU72.3m, respectively. The reduction in estimated programme length and cost may represent progress towards the eradication objective, although eradication of this species still remains a long term prospect.
Resumo:
Decision-making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream-flows in north-eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.
Resumo:
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity. 2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates. 3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate. 4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates. 5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.
Resumo:
This project has delivered technical sensory language that accurately and precisely describes the flavour and texture of key seafood species to the seafood industry of the Eyre Peninsula. Industry members and producers have been trained on the sensory properties of their products and are equipped with knowledge of how to apply sensory language to their products for their customers. The seafood industry of the Eyre Peninsula has embraced the “Eyre Peninsula Seafood Flavour wheel” and is already using it in the promotion of their products. In addition local, national and international seafood producers and end-users have indicated a strong interest in the results and outputs of this project and the potential application of the seafood flavour wheel in their respective businesses.
Resumo:
Stochastic growth models were fitted to length-increment data of eastern king prawns, Melicertus plebejus (Hess, 1865), tagged across eastern Australia. The estimated growth parameters and growth transition matrix are for each sex representative of the species' geographical distribution. Our study explicitly displays the stochastic nature of prawn growth. Capturing length-increment growth heterogeneity for short-lived exploited species such as prawns that cannot be readily aged is essential for length-based modelling and improved management.
Resumo:
Remote detection of management-related trend in the presence of inter-annual climatic variability in the rangelands is difficult. Minimally disturbed reference areas provide a useful guide, but suitable benchmarks are usually difficult to identify. We describe a method that uses a unique conceptual framework to identify reference areas from multitemporal sequences of ground cover derived from Landsat TM and ETM+ imagery. The method does not require ground-based reference sites nor GIS layers about management. We calculate a minimum ground cover image across all years to identify locations of most persistent ground cover in years of lowest rainfall. We then use a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. This difference estimates ground-cover change between successive below-average rainfall years, which provides a seasonally interpreted measure of management effects. We examine the approach's sensitivity to window size and to cover-index percentiles used to define persistence. The method successfully detected management-related change in ground cover in Queensland tropical savanna woodlands in two case studies: (1) a grazing trial where heavy stocking resulted in substantial decline in ground cover in small paddocks, and (2) commercial paddocks where wet-season spelling (destocking) resulted in increased ground cover. At a larger scale, there was broad agreement between our analysis of ground-cover change and ground-based land condition change for commercial beef properties with different a priori ratings of initial condition, but there was also some disagreement where changing condition reflected pasture composition rather than ground cover. We conclude that the method is suitably robust to analyse grazing effects on ground cover across the 1.3 x 10(6) km(2) of Queensland's rangelands. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.
Resumo:
Establishment of the rumen microbiome can be affected by both early-life dietary measures and rumen microbial inoculation. This study used a 2 × 3 factorial design to evaluate the effects of inclusion of dietary fat type and the effects of rumen inoculum from different sources on ruminal bacterial communities present in early stages of the lambs’ life. Two different diets were fed ad libitum to 36 pregnant ewes (and their lambs) from 1 month pre-lambing until weaning. Diets consisted of chaffed lucerne and cereal hay and 4% molasses, with either 4% distilled coconut oil (CO) provided as a source of rumen-active fat or 4% Megalac® provided as a source of rumen-protected fat (PF). One of three inoculums was introduced orally to all lambs, being either (1) rumen fluid from donor ewes fed the PF diet; (2) rumen fluid from donor ewes fed CO; or (3) a control treatment of MilliQ-water. After weaning at 3 months of age, each of the six lamb treatment groups were grazed in spatially separated paddocks. Rumen bacterial populations of ewes and lambs were characterised using 454 amplicon pyrosequencing of the V3/V4 regions of the 16S rRNA gene. Species richness and biodiversity of the bacterial communities were found to be affected by the diet in ewes and lambs and by inoculation treatment of the lambs. Principal coordinate analysis and analysis of similarity (ANOSIM) showed between diet differences in bacterial community groups existed in ewes and differential bacterial clusters occurred in lambs due to both diet and neonatal inoculation. Diet and rumen inoculation acted together to clearly differentiate the bacterial communities through to weaning, however the microbiome effects of these initial early life interventions diminished with time so that rumen bacterial communities showed greater similarity 2 months after weaning. These results demonstrate that ruminal bacterial communities of newborn lambs can be altered by modifying the diet of their mothers. Moreover, the rumen microbiome of lambs can be changed by diet while they are suckling or by inoculating their rumen, and resulting changes in the rumen bacterial microbiome can persist beyond weaning.