6 resultados para Steroid hormones
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.
Resumo:
Domestication of the recently discovered and highly endangered Wollemi pine has relied almost entirely upon serial propagation of cuttings from a very small conservation collection. This study assessed the requirement for applied auxin to induce rooting in tip cuttings and lower segment cuttings of Wollemi pine. Both types of cuttings proved easy-to-root, with mean rooting of 71% for tip cuttings and 82% for lower segments. Auxin application (at 1.5, 3.0 or 8.0 g indole-3-butyric acid/L) did not accelerate root protrusion from propagation tubes or affect final rooting percentages.
Resumo:
Carotenoids prevent different degenerative diseases and improve human health. Microalgae are commercially exploited for carotenoids, including astaxanthin and β-carotene. Two commercially important microalgae, Dunaliella salina and Tetraselmis suecica, were treated with plant hormones salicylic acid (SA) and methyl jasmonate (MJ), or by UV-C radiation (T. suecica only) and a combination thereof. Significant increases in total carotenoids were found for D. salina and T. suecica after treatment with MJ (10 μmol/L) and SA (70–250 μmol/L), respectively. T. suecica also had significant increases in total carotenoids following UV-C radiation compared to control cultures. Among the carotenoids, lutein was the highest induced carotenoid. A combination of these two treatments also showed a significant increase in total carotenoids and lutein for T. suecica, when compared to controls. Plant hormones and UV-C radiation may be useful tools for increasing carotenoid accumulation in green microalgae although the responses are species- and dose-specific and should be trialed in medium to large scale to explore commercial production.
Resumo:
In order to develop an efficient and reliable biolistics transformation system for pineapples parameters need to be optimised for growth, survival and development of explants pre- and post transformation. We have optimised in vitro conditions for culture media for the various stages of plant and callus initiation and development, and for effective selection of putative transgenic material. Shoot multiplication and proliferation is best on medium containing MS basic nutrients and vitamins with the addition of 0.1 mg/L myo-inositol, 20 g/L sucrose, 2.5 mg/L BAP and 3 g/L Phytagel, followed by transfer to basic MS medium for further development. Callus production on leaf base explants is best on MS nutrients and vitamins, to which 10 mg/L of BAP and NAA each was added. Optimum explant age for bombardment is 17-35 week old callus, while a pre-bombardment osmoticum treatment in the medium is not required. By comparing several antibiotics as selective agent, it has been established that a two-step selection of 2 fortnightly sub-cultures on 50 μg/mL of geneticin in the culture medium, followed by monthly sub-cultures on 100 μg/mL geneticin is optimal for survival of transgenic callus. Shoot regeneration from callus cultures is optimal on medium containing MS nutrients and vitamins, 5% coconut water and 400 mg/L casein hydrolysate. Plants can be readily regenerated and multiplied from transgenic callus through organogenesis. Rooting of shoots does not require any additional plant hormones to the medium. A transformation efficiency of 1 – 3.5% can be achieved, depending on the gene construct applied.
Resumo:
In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-beta-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction.
Resumo:
Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5–305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3–370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3–311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2–205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species