3 resultados para Spin-projected calculations

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attention is directed at land application of piggery effluent (containing urine, faeces, water, and wasted feed) as a potential source of water resource contamination with phosphorus (P). This paper summarises P-related properties of soil from 0-0.05 m depth at 11 piggery effluent application sites, in order to explore the impact that effluent application has had on the potential for run-off transport of P. The sites investigated were situated on Alfisol, Mollisol, Vertisol, and Spodosol soils in areas that received effluent for 1.5-30 years (estimated effluent-P applications of 100-310000 kg P/ha in total). Total (PT), bicarbonate extractable (PB), and soluble P forms were determined for the soil (0-0.05 m) at paired effluent and no-effluent sites, as well as texture, oxalate-extractable Fe and Al, organic carbon, and pH. All forms of soil P at 0-0.05 m depth increased with effluent application (PB at effluent sites was 1.7-15 times that at no-effluent sites) at 10 of the 11 sites. Increases in PB were strongly related to net P applications (regression analysis of log values for 7 sites with complete data sets: 82.6 % of variance accounted for, p <0.01). Effluent irrigation tended to increase the proportion of soil PT in dilute CaCl2-extractable forms (PTC: effluent average 2.0 %; no-effluent average 0.6%). The proportion of PTC in non-molybdate reactive forms (centrifuged supernatant) decreased (no-effluent average, 46.4 %; effluent average, 13.7 %). Anaerobic lagoon effluent did not reliably acidify soil, since no consistent relationship was observed for pH with effluent application. Soil organic carbon was increased in most of the effluent areas relative to the no-effluent areas. The four effluent areas where organic carbon was reduced had undergone intensive cultivation and cropping. Current effluent management at many of the piggeries failed to maximise the potential for waste P recapture. Ten of the case-study effluent application areas have received effluent-P in excess of crop uptake. While this may not represent a significant risk of leaching where sorption retains P, it has increased the risk of transport of P by run-off. Where such sites are close to surface water, run-off P loads should be managed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.