38 resultados para Species distribution modelling

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Twenty new Australian species of the scarabaeine genus Onthophagus Latreille are described: O. arkoola, O. beelarong, O. bindaree, O. binyana, O. bundara, O. cooloola, O. dinjerra, O. godarra, O. gurburra, O. kakadu, O. mije, O. mongana, O. pinaroo, O. trawalla, O. weringerong, O. williamsi, O. worooa, O. yackatoon, O. yaran, O. yourula. Notes and scanning electron micrographs are given to assist in the separation of each from previously described Australian species. Distribution maps are provided for each species

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scarab species associated with groundnuts were surveyed in Andhra Pradesh, Karnataka and Tamil Nadu, southern India, between 1995 and 2001. Scarab adults were collected from trees on which they were feeding and/or mating, and larvae (white grubs) from groundnut fields. Holotrichia species, especially H. reynaudi and H. serrata were the major species associated with groundnut. H. reynaudi predominated in the central Deccan area, while H. serrata was most abundant in areas to the south and west. A new, undescribed, Holotrichia species near H. consanguinea was collected south and south-west of Hyderabad in mixed populations with H. reynaudi. However, the full extent of this new speciesdistribution remains uncertain. H. rufoflava was rarely associated with groundnut, but was common as an adult at some locations. Other genera encountered during surveys were Anomala, Adoretus, Schizonycha, Autoserica. In survey data, densities of Holotrichia larvae and ‘all other white grubs’ were both very highly correlated with % of damaged groundnut plants. These correlations in combination with concurrent observations of plant damage establish a causal link between white grubs and plant damage and death in southern Indian groundnut. Ranking of preferred host trees for adults were developed from field observations for four Holotrichia species and Schizonycha spp. and will assist grower-initiated surveys of pest occurrence. In combination with insecticide efficacy data published elsewhere, the survey provides the basis for an environmentally friendly and economically viable pest-management system for white grubs on groundnut in southern India.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nipah virus (NiV) (Genus Henipavirus) is a recently emerged zoonotic virus that causes severe disease in humans and has been found in bats of the genus Pteropus. Whilst NiV has not been detected in Australia, evidence for NiV-infection has been found in pteropid bats in some of Australia's closest neighbours. The aim of this study was to determine the occurrence of henipaviruses in fruit bat (Family Pteropodidae) populations to the north of Australia. In particular we tested the hypothesis that Nipah virus is restricted to west of Wallace's Line. Fruit bats from Australia, Papua New Guinea, East Timor and Indonesia were tested for the presence of antibodies to Hendra virus (HeV) and Nipah virus, and tested for the presence of HeV, NiV or henipavirus RNA by PCR. Evidence was found for the presence of Nipah virus in both Pteropus vampyrus and Rousettus amplexicaudatus populations from East Timor. Serology and PCR also suggested the presence of a henipavirus that was neither HeV nor NiV in Pteropus alecto and Acerodon celebensis. The results demonstrate the presence of NiV in the fruit bat populations on the eastern side of Wallace's Line and within 500 km of Australia. They indicate the presence of non-NiV, non-HeV henipaviruses in fruit bat populations of Sulawesi and Sumba and possibly in Papua New Guinea. It appears that NiV is present where P. vampyrus occurs, such as in the fruit bat populations of Timor, but where this bat species is absent other henipaviruses may be present, as on Sulawesi and Sumba. Evidence was obtained for the presence henipaviruses in the non-Pteropid species R. amplexicaudatus and in A. celebensis. The findings of this work fill some gaps in knowledge in geographical and species distribution of henipaviruses in Australasia which will contribute to planning of risk management and surveillance activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary: This research represents the first age-based demographic assessment of pearl perch, Glaucosoma scapulare (Ramsay, 1881), a highly valued species endemic to coastal waters off central eastern Australia. The study was conducted across the species' distribution that encompasses two state jurisdictions (Queensland in the north and New South Wales in the south) using data collected approximately 10 years apart in each state. Estimates of age were made by counting annuli (validated using marginal increment ratios) in sectioned sagittal otoliths. The maximum estimated age was 19 years. Pearl perch attained approx. 12 cm fork length (FL) after one year, 21 cm FL after 2 years and 29 cm FL after 3 years. Fish from the southern end of the species' distribution grew significantly more slowly than those from the northern part of its range. Commercial landings in the north were characterized by greater proportions of larger (>40 cm FL) and older (>6 years) fish than those in the south, with landings mainly of fish between 3 and 6 years of age. The observed variations in age-based demographics of pearl perch highlight the need for a better understanding of patterns of movement and reproduction in developing a model of population dynamics and life-history for this important species. There is a clear need for further, concurrent, age-based studies on pearl perch in the northern and southern parts of its distribution to support the conclusions of the present study based on data collected a decade apart. © 2013 Blackwell Verlag GmbH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bactrocera frauenfeldi (Schiner), the ‘mango fruit fly’, is a horticultural pest originating from the Papua New Guinea region. It was first detected in Australia on Cape York Peninsula in north Queensland in 1974 and had spread to Cairns by 1994 and Townsville by 1997. Bactrocera frauenfeldi has not been recorded further south since then despite its invasive potential, an absence of any controls and an abundance of hosts in southern areas. Analysis of cue-lure trapping data from 1997 to 2012 in relation to environmental variables shows that the distribution of B. frauenfeldi in Queensland correlates to locations with a minimum temperature for the coldest month >13.2°C, annual temperature range <19.3°C, mean temperature of the driest quarter >20.2°C, precipitation of the wettest month >268 mm, precipitation of the wettest quarter >697 mm, temperature seasonality <30.9°C (i.e. lower temperature variability) and areas with higher human population per square kilometre. Annual temperature range was the most important variable in predicting this species' distribution. Predictive distribution maps based on an uncorrelated subset of these variables reasonably reflected the current distribution of this species in northern Australia and predicted other areas in the world potentially at risk from invasion by this species. This analysis shows that the distribution of B. frauenfeldi in Australia is correlated to certain environmental variables that have most likely limited this species' spread southward in Queensland. This is of importance to Australian horticulture in demonstrating that B. frauenfeldi is unlikely to establish in horticultural production areas further south than Townsville.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five new species of the flightless scarabaeine genus Aptenocanthon Matthews are described from northern Australia: jimara sp. nov. from the Northern Territory; kabura sp. nov., wollumbin sp. nov., winyur sp. nov. and speewah sp. nov. from mountains in the wet tropics of northern Queensland. A key is given to the eight species in the genus. A. jimara is the first record of the genus away from the east coast. Biology and distribution are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A spatially explicit multi-competitor coexistence model was developed for meta-populations of prawns (shrimp) occupying habitat patches across the Great Barrier Reef, where dispersal was localised and dispersal rates varied between species. Prawns were modelled as individuals moving to and from patches or cells according to pre-set decision rules. The landscape was simulated as a matrix of cells with each cell having a spatially explicit survival index for each species. Mixed species prawn assemblages moved over this simplified spatially explicit landscape. A low level of chronic random environmental disturbance was assumed (cyclone and tropical storm damage) with additional acute spatially confined disturbance due to commercial trawling, modelled as an increase in mortality affecting inter-specific competition. The general form of the results was for increased disturbance to favour good-colonising "generalist" species at the expense of good-competitor "specialists". Increasing fishing mortality (local patch extinctions) combined with poor colonising ability resulted in low equilibrium abundance for even the best competitor, while in the same circumstances the poorest competitor but best coloniser could have the highest equilibrium abundance. This mimics the switch from high-value prawn species to lower-value prawn species as trawl effort increases, reflected in historic catch and effort logbook data and reported anecdotaly from the north Queensland trawl fleet. To match the observed distribution and behaviour of prawn assemblages, a combination inter-species competition, a spatially explicit landscape, and a defined pattern of disturbance (trawling) was required. Modelling this combination could simulate not only general trends in spatial distribution of each of prawn species but also localised concentrations observed in the survey data

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computer modelling promises to be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The `spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/-50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The value of CLIMEX models to inform biocontrol programs was assessed, including predicting the potential distribution of biocontrol agents and their subsequent population dynamics, using bioclimatic models for the weed Parkinsonia aculeata, two Lantana camara biocontrol agents, and five Mimosa pigra biocontrol agents. The results showed the contribution of data types to CLIMEX models and the capacity of these models to inform and improve the selection, release and post release evaluation of biocontrol agents. Foremost among these was the quality of spatial and temporal information as well as the extent to which overseas range data samples the species’ climatic envelope. Post hoc evaluation and refinement of these models requires improved long-term monitoring of introduced agents and their dynamics at well selected study sites. The authors described the findings of these case studies, highlighted their implications, and considered how to incorporate models effectively into biocontrol programs.