13 resultados para Spatial Distribution
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Across three tropical Australian sclerophyll forest types, site-specific environmental variables could explain the distribution of both quantity (abundance and biomass) and richness (genus and species) of hypogeous fungi sporocarps. Quantity was significantly higher in the Allocasuarina forest sites that had high soil nitrogen but low phosphorous. Three genera of hypogeous fungi were found exclusively in Allocasuarina forest sites including Gummiglobus, Labyrinthomyces and Octaviania, as were some species of Castoreum, Chondrogaster, Endogone, Hysterangium and Russula. However, the forest types did not all group according to site-scale variables and subsequently the taxonomic assemblages were not significantly different between the three forest types. At site scale, significant negative relationships were found between phosphorous concentration and the quantity of hypogeous fungi sporocarps. Using a multivariate information theoretic approach, there were other more plausible models to explain the patterns of sporocarp richness. Both the mean number of fungal genera and species increased with the number of Allocasuarina stems, at the same time decreasing with the number of Eucalyptus stems. The optimal conditions for promoting hypogeous fungi sporocarp quantity and sporocarp richness appear to be related to the presence and abundance of Allocasuarina (Casuarinaceae) host trees. Allocasuarina tree species may have a higher host receptivity for ectomycorrhizal hypogeous fungi species that provide an important food resource for Australian mycophagous animals.
Resumo:
The size at recruitment, temporal and spatial distribution, and abiotic factors influencing abundance of three commercially important species of penaeid prawns in the sublittoral trawl grounds of Moreton Bay (Queensland, Australia) were compared. Metapenaeus bennettae and Penaeus plebejus recruit to the trawl grounds at sizes which are relatively small (14-15 mm carapace length, CL) and below that at which prawns are selected for, and retained, in the fleet's cod-ends. In contrast, Penaeus esculenlus recruit at the relatively large size of 27 mm CL from February to May, well above the size ranges selected for. Recruitment of M. bennettae extends over several months, September-October and February March, and was thus likely to be bi-annual, while the recruitment period of P. plebejus was distinct, peaking in October-November each year. Size classes of M . bennettae were the most spatially stratified of the three species. Catch rates of recruits were negatively correlated with depth for all three species, and were also negatively correlated with salinity for M. bennettae.
Resumo:
A spatially explicit multi-competitor coexistence model was developed for meta-populations of prawns (shrimp) occupying habitat patches across the Great Barrier Reef, where dispersal was localised and dispersal rates varied between species. Prawns were modelled as individuals moving to and from patches or cells according to pre-set decision rules. The landscape was simulated as a matrix of cells with each cell having a spatially explicit survival index for each species. Mixed species prawn assemblages moved over this simplified spatially explicit landscape. A low level of chronic random environmental disturbance was assumed (cyclone and tropical storm damage) with additional acute spatially confined disturbance due to commercial trawling, modelled as an increase in mortality affecting inter-specific competition. The general form of the results was for increased disturbance to favour good-colonising "generalist" species at the expense of good-competitor "specialists". Increasing fishing mortality (local patch extinctions) combined with poor colonising ability resulted in low equilibrium abundance for even the best competitor, while in the same circumstances the poorest competitor but best coloniser could have the highest equilibrium abundance. This mimics the switch from high-value prawn species to lower-value prawn species as trawl effort increases, reflected in historic catch and effort logbook data and reported anecdotaly from the north Queensland trawl fleet. To match the observed distribution and behaviour of prawn assemblages, a combination inter-species competition, a spatially explicit landscape, and a defined pattern of disturbance (trawling) was required. Modelling this combination could simulate not only general trends in spatial distribution of each of prawn species but also localised concentrations observed in the survey data
Resumo:
Australian researchers have been developing robust yield estimation models, based mainly on the crop growth response to water availability during the crop season. However, knowledge of spatial distribution of yields within and across the production regions can be improved by the use of remote sensing techniques. Images of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, available since 1999, have the potential to contribute to crop yield estimation. The objective of this study was to analyse the relationship between winter crop yields and the spectral information available in MODIS vegetation index images at the shire level. The study was carried out in the Jondaryan and Pittsworth shires, Queensland , Australia . Five years (2000 to 2004) of 250m resolution, 16-day composite of MODIS Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images were used during the winter crop season (April to November). Seasonal variability of the profiles of the vegetation index images for each crop season using different regions of interest (cropping mask) were displayed and analysed. Correlation analysis between wheat and barley yield data and MODIS image values were also conducted. The results showed high seasonal variability in the NDVI and EVI profiles, and the EVI values were consistently lower than those of the NDVI. The highest image values were observed in 2003 (in contrast to 2004), and were associated with rainfall amount and distribution. The seasonal variability of the profiles was similar in both shires, with minimum values in June and maximum values at the end of August. NDVI and EVI images showed sensitivity to seasonal variability of the vegetation and exhibited good association (e.g. r = 0.84, r = 0.77) with winter crop yields.
Resumo:
1. The European red fox Vulpes vulpes represents a continuing threat to both livestock and native vertebrates in Australia, and is commonly managed by setting ground-level baits impregnated with 1080 (sodium fluoroacetate) poison. However, the long-term effectiveness of such control campaigns is likely to be limited due to the ability of foxes to disperse over considerable distances and to swiftly recolonize areas from where they had been removed. 2. To investigate the effectiveness of fox baiting in a production landscape, we assessed the potential for foxes to reinvade baited farm property areas within the jurisdiction of the Molong Rural Lands Protection Board (RLPB), an area of 815 000 ha on the central tablelands of New South Wales, Australia. The spatial distribution and timing of fox baiting campaigns between 1998 and 2002 was estimated from RLPB records and mapped using Geographical Information System software. The effectiveness of the control campaign was assessed on the basis of the likely immigration of foxes from non-baited farms using immigration distances calculated from published relationships between dispersal distance and home range size. 3. Few landholders undertook baiting campaigns in any given year, and the area baited was always so small that no baited property would have been sufficiently far from an unbaited property to have been immune from immigrating individuals. It is likely, therefore, that immigration onto farms negated any long-term effects of baiting operations. This study highlights some of the key deficiencies in current baiting practices in south-eastern Australia and suggests that pest management programmes should be monitored using such methods to ensure they achieve their goals.
Resumo:
To eradicate a weed invasion, its extent must be delimited and each infestation must be extirpated. Measures for both of these criteria are utilized to assess the progress of current eradication programs targeting mikania vine and limnocharis in northern Australia. The known infested area for each species is less than 5 ha and has remained largely static for the last 3 or more years against a backdrop of refined and enhanced detection methods. This suggests that delimitation has been approached, if not achieved. Different methods of detection have their places, relative to the stage of the program and the spatial distribution of infestations. Although all known infestations of both species are effectively monitored and controlled, ongoing emergence from persistent seed banks limits progress towards the extirpation of infestations to a slow, but measurable, rate. Nomenclature: Glyphosate. N-phosphonomethyl)glycine; fluroxypyr, [(4-amino-3,5-dichloro-6-fluoro-2-pyridinyl)oxy]acetic acid; limnocharis, Limnocharis flava (L.) Buchenau LIFL5; mikania vine (mile-a-minute), Mikania micrantha Kunth MIKMI.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
1. Litter samples were collected at the end of the production cycle from spread litter in a single shed from each of 28 farms distributed across the three Eastern seaboard States of Australia. 2. The geometric mean for Salmonella was 44 Most Probable Number (MPN)/g for the 20 positive samples. Five samples were between 100 and 1000 MPN/g and one at 105 MPN/g, indicating a range of factors are contributing to these varying loads of this organism in litter. 3. The geometric mean for Campylobacter was 30 MPN/g for the 10 positive samples, with 7 of these samples being 100 MPN/g. The low prevalence and incidence of Campylobacter were possibly due to the rapid die-off of this organism. 4. E. coli values were markedly higher than the two key pathogens (geometric mean 20 x 105 colony forming units (cfu)/g) with overall values being more or less within the same range across all samples in the trial, suggesting a uniform contribution pattern of these organisms in litter. 5. Listeria monocytogenes was absent in all samples and this organism appears not to be an issue in litter. 6. The dominant (70% of the isolates) Salmonella serovar was S. Sofia (a common serovar isolated from chickens in Australia) and was isolated across all regions. Other major serovars were S. Virchow and S. Chester (at 10%) and S. Bovismorbificans and S. Infantis (at 8%) with these serovars demonstrating a spatial distribution across the major regions tested. 7. There is potential to re-use litter in the environment depending on end use and the support of relevant application practices and guidelines.
Resumo:
Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Phoracantha longicorn beetles are endemic to Australia, and some species have become significant pests of eucalypts worldwide, yet little is known about their host plant interactions and factors influencing tree susceptibility in Australia. Here, we investigate the host relationships of Phoracantha solida (Blackburn, 1894) on four eucalypt taxa (one pure species and three hybrid families), examining feeding site physical characteristics including phloem thickness, density, and moisture content, and host tree factors such as diameter, height, growth, taper, and survival. We also determine the cardinal and vertical (within-tree) and horizontal (between-tree) spatial distribution of borers. Fewer than 10% of P. solida attacks were recorded from the pure species (Corymbia citriodora subsp. variegate (Hook)), and this taxon also showed the highest survival, phloem thickness, relative growth rate, and bark:wood area. For the two most susceptible taxa, borer severity was negatively correlated with moisture content, and positively related to phloem density. Borers were nonrandomly and nonuniformly distributed within trees, and were statistically aggregated in 32% of plots. More attacks were situated on the northern side of the tree than the other aspects, and most larvae fed within the lower 50 cm of the bole, with attack height positively correlated with severity. Trees with borers had more dead neighbors, and more bored neighbors, than trees without borers, while within plots, borer incidence and severity were positively correlated. Because the more susceptible taxa overlapped with less susceptible taxa for several physical tree factors, the role of primary and secondary chemistries in determining host suitability needs to be investigated. Nevertheless, taxon, moisture content, phloem density, tree size, and mortality of neighboring trees appeared the most important physical characteristics influencing host suitability for P. solida at this site.
Resumo:
Previously regarded as minor nuisance pests, psocids belonging to the genus Liposcelis now pose a major problem for the effective protection of stored products worldwide. Here we examine the apparent biological and operational reasons behind this phenomenon and why conventional pest management seems to be failing. We investigate what is known about the biology, behavior, and population dynamics of major pest species to ascertain their strengths, and perhaps find weaknesses, as a basis for a rational pest management strategy. We outline the contribution of molecular techniques to clarifying species identification and understanding genetic diversity. We discuss progress in sampling and trapping and our comprehension of spatial distribution of these pests as a foundation for developing management strategies. The effectiveness of various chemical treatments and the availability and potential of nonchemical control methods are critically examined. Finally, we identify research gaps and suggest future directions for research.
Resumo:
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.
Resumo:
The project examined coastal and physical oceanographic influences on the catch rates of coral trout (Plectropomus leopardus) and saucer scallops (Amusium balloti) in Queensland. The research was undertaken to explain variation observed in the catches, and to improve quantitative assessment of the stocks and management advice. 3.1 OBJECTIVES 1. Review recent advances in the study of physical oceanographic influences on fisheries catch data, and describe the major physical oceanographic features that are likely to influence Queensland reef fish and saucer scallops. 2. Collate Queensland’s physical oceanographic data and fisheries (i.e. reef fish and saucer scallops) data. 3. Develop stochastic population models for reef fish and saucer scallops, which can link physical oceanographic features (e.g. sea surface temperature anomalies) to catch rates, biological parameters (e.g. growth, reproduction, natural mortality) and ecological aspects (e.g. spatial distribution).