116 resultados para Soil-borne fungi

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the report is to summarise progress in developing vegetable production systems with improved soil health that overcome soil limitations with the potential to suppress soil borne diseases. Management approaches to soil health improvement were regionally specific to overcome regional soil limitations in different production environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Australia’s northern grain-producing region is unique in that the root-lesion nematode (RLN), Pratylenchus thornei predominates. P. neglectus is also present. RLN cause substantial yield losses, particularly in wheat, but they reproduce on numerous summer and winter crops. Each nematode species prefers different crops and varieties. This project provides growers with a range of integrated management strategies to limit RLN (i.e. identify the problem, protect uninfested fields, rotate with resistant crops to keep populations low and choose tolerant crops to maximise yields). It also provides new information about soil-borne zoosporic fungi in the region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria , Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. © 2014 Penton et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymyxa graminis was detected in the roots of barley plants from a field near Wondai, Queensland, in 2009. P. graminis was identified by characteristic sporosori in roots stained with trypan blue. The presence of P. graminis f. sp. tepida (which is hosted by wheat and oats as well as barley) in the roots was confirmed by specific PCR tests based on nuclear ribosomal DNA. P. graminis is the vector of several damaging soil-borne virus diseases of cereals in the genera Furovirus, Bymovirus and Pecluvirus. No virus particles were detected in sap extracts from leaves of stunted barley plants with leaf chlorosis and increased tillering. Further work is required to determine the distribution of P. graminis in Australian grain crops and the potential for establishment and spread of the exotic soil-borne viruses that it vectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development of improved farming systems for ginger to decrease damage caused by soil-borne pathogens in Fiji and Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project is to identify treatments that ginger growers can use to control two serious soil-borne pathogens that have emerged and threaten the viability of the ginger industry. Pythium myriotylum, responsible for a severe rhizome rot, is the more serious of the two. It was first identified by ginger growers in the 2007/08 growing season, with some producers reporting total crop losses in some blocks. Symphylids are wingless soil-inhabiting arthropods that feed on the ginger plant's root tips and impair the plants´ ability to absorb nutrients, seriously restricting plant growth and development. Damage caused by symphylids to ginger roots is also expected to facilitate entry of Pythium into the plant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project covered the 2006-2011 operations of the Northern Node of Barley Breeding Australia (BBA-North). BBANorth collaborated with the Southern and Western nodes and all BBA participants to deliver improved barley varieties to the Australian grains industry. BBA-North focused on the northern region and was the national leader in breeding high yielding, disease resistant barleys with grain quality that enhanced the crop's status as a preferred feed grain. Development of varieties for the malting and brewing industries was also targeted. This project incorporated coordination, breeding, regional evaluation, foliar and soil-borne disease tests, molecular marker screens and grain and malt quality analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Virus and soil borne pathogens negatively impact on the production of potatoes in tropical highland and sub-tropical environments, limiting supply of an increasingly popular and important vegetable in these regions. It is common for latent disease infected seed tubers or field grown cuttings to be used as potato planting material. We utilised an International Potato Centre technique, using aeroponic technology, to produce low cost mini-tubers in tropical areas. The system has been optimised for increased effectiveness in tropical areas. High numbers of seed tubers of cultivar Sebago (630) and Nicola per m2 (>900) were obtained in the first generation, and the system is capable of producing five crops of standard cultivars in every two years. Initial results indicate that quality seed could be produced by nurseries and farmers, therefore contributing to the minimisation of soil borne diseases in an integrated management plan. This technology reduces seed production costs, benefiting seed and potato growers. © ISHS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In vitro experimental environments are used to study interactions between microorganisms, and predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to closely match the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation was studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25oC and 30oC). Competition experiments showed interaction between main effects of aflatoxin accumulation and environment at 25oC, but not so at 30oC. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-hour incubation in different experimental environments. Whereas, all fungi incubated within the soil environment survived; in the cotton-wool environment, none of the competitors of A. flavus survived at 30 oC. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post harvest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root-lesion nematode (Pratylenchus thornei) significantly reduces wheat yields in the northern Australian grain region. Canola is thought to have a 'biofumigation' potential to control nematodes; therefore, a field experiment was designed to compare canola with other winter crops or clean-fallow for reducing P. thornei population densities and improving growth of P. thornei-intolerant wheat (cv. Batavia) in the following year. Immediately after harvest of the first-year crops, populations of P. thornei were lowest following various canola cultivars or clean-fallow (1957-5200 P. thornei/kg dry soil) and were highest following susceptible wheat cultivars (31 033-41 294/kg dry soil). Unexpectedly, at planting of the second-year wheat crop, nematode populations were at more uniform lower levels (<5000/kg dry soil), irrespective of the previous season's treatment, and remained that way during the growing season, which was quite dry. Growth and grain yield of the second-year wheat crop were poorest on plots previously planted with canola or left fallow due to poor colonisation with arbuscular mycorrhizal (AM) fungi, with the exception of canola cv. Karoo, which had high AM fungal colonisation and low wheat yields. There were significant regressions between growth and yield parameters of the second-year wheat and levels of AMF following the pre-crop treatments. Thus, canola appears to be a good crop for reducing P. thornei populations, but AM fungal-dependence of subsequent crops should be considered, particularly in the northern Australian grain region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-fallow disorder is expressed as exacerbated deficiencies of phosphorus (P) and/or zinc (Zn) in field crops growing after long periods of weed-free fallow. The hypothesis that arbuscular-mycorrhizal fungi (AMF) improve the P and Zn nutrition, and thereby biomass production and seed yield of linseed (Linum usitatissimum) was tested in a field experiment. A factorial combination of treatments consisting of +/- fumigation, +/- AMF inoculation with Glomus spp., +/- P and +/- Zn fertilisers was used on a long-fallowed vertisol. The use of such methods allowed an absolute comparison of plants growing with and without AMF in the field for the first time in a soil disposed to long-fallow disorder. Plant biomass, height, P and Zn concentrations and contents, boll number and final seed yield were (a) least in fumigated soil with negligible AMF colonisation of the roots, (b) low initially in long-fallow soil but increased with time as AMF colonisation of the roots developed, and (c) greatest in soil inoculated with AMF cultures. The results showed for the first time in the field that inflows of both P and Zn into linseed roots were highly dependent on %AMF-colonisation (R-2 = 0.95 for P and 0.85 for Zn, P < 0.001) in a soil disposed to long-fallow disorder. Relative field mycorrhizal dependencies without and with P+Zn fertiliser were 85 % and 86 % for biomass and 68 % and 52 % for seed yield respectively. This research showed in the field that AMF greatly improved the P and Zn nutrition, biomass production and seed yield of linseed growing in a soil disposed to long-fallow disorder. The level of mycorrhizal colonisation of plants suffering from long-fallow disorder can increase during the growing season resulting in improved plant growth and residual AMF inoculum in the soil, and thus it is important for growers to recognise the cause and not terminate a poor crop prematurely in order to sow another. Other positive management options to reduce long fallows and foster AMF include adoption of conservation tillage and opportunity cropping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In semi-arid sub-tropical areas, a number of studies concerning no-till (NT) farming systems have demonstrated advantages in economic, environmental and soil quality aspects over conventional tillage (CT). However, adoption of continuous NT has contributed to the build-up of herbicide resistant weed populations, increased incidence of soil- and stubble-borne diseases, and stratification of nutrients and organic carbon near the soil surface. Some farmers often resort to an occasional strategic tillage (ST) to manage these problems of NT systems. However, farmers who practice strict NT systems are concerned that even one-time tillage may undo positive soil condition benefits of NT farming systems. We reviewed the pros and cons of the use of occasional ST in NT farming systems. Impacts of occasional ST on agronomy, soil and environment are site-specific and depend on many interacting soil, climatic and management conditions. Most studies conducted in North America and Europe suggest that introducing occasional ST in continuous NT farming systems could improve productivity and profitability in the short term; however in the long-term, the impact is negligible or may be negative. The short term impacts immediately following occasional ST on soil and environment include reduced protective cover, soil loss by erosion, increased runoff, loss of C and water, and reduced microbial activity with little or no detrimental impact in the long-term. A potential negative effect immediately following ST would be reduced plant available water which may result in unreliability of crop sowing in variable seasons. The occurrence of rainfall between the ST and sowing or immediately after the sowing is necessary to replenish soil water lost from the seed zone. Timing of ST is likely to be critical and must be balanced with optimising soil water prior to seeding. The impact of occasional ST varies with the tillage implement used; for example, inversion tillage using mouldboard tillage results in greater impacts as compared to chisel or disc. Opportunities for future research on occasional ST with the most commonly used implements such as tine and/or disc in Australia’s northern grains-growing region are presented in the context of agronomy, soil and the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil Health, Soil Biology, Soilborne Diseases and Sustainable Agriculture provides readily understandable information about the bacteria, fungi, nematodes and other soil organisms that not only harm food crops but also help them take up water and nutrients and protect them from root diseases. Complete with illustrations and practical case studies, it provides growers and their consultants with holistic solutions for building an active and diverse soil biological community capable of improving soil structure, enhancing plant nutrient uptake and suppressing root pests and pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine new species of smut fungi, belonging to eight genera, are described from Australia: Dermatosorus schoenoplecti Vánky & R.G. Shivas, on Schoenoplectus mucronatus, Entyloma grampiansis Vánky & R.G. Shivas, on Hydrocotyle laxiflora, Macalpinomyces brachiariae Vánky, C. Vánky & R.G. Shivas, on Brachiaria holosericea, M. digitariae Vánky & R.G. Shivas, on Digitaria gibbosa, Restiosporium baloskionis Vánky & R.G. Shivas, on Baloskion tetraphyllum, Thecaphora maireanae R.G. Shivas & Vánky, on Maireana pentagona, Tilletia cape yorkensis Vánky & R.G. Shivas, on Whiteochloa airoides, Urocystis chorizandrae J. Cunnington, R.G. Shivas & Vánky, on Chorizandra enodis, and Ustanciosporium tenellum R.G . Shivas & Vánky, on Cyperus tenellus. New combinations are: Macalpinomyces ordensis(R.G. Shivas & Vánky) Vánky & R.G. Shivas (based on Sporisorium ordense, type on Brachiaria pubigera, Australia), and Sporisorium setariae (McAlpine) Vánky & R.G. Shivas (based on Sorosporium setariae, type on Setaria glauca, Australia).