126 resultados para Soil Conservation

em eResearch Archive - Queensland Department of Agriculture


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Runoff, soil loss, and nutrient loss were assessed on a Red Ferrosol in tropical Australia over 3 years. The experiment was conducted using bounded, 100-m(2) field plots cropped to peanuts, maize, or grass. A bare plot, without cover or crop, was also instigated as an extreme treatment. Results showed the importance of cover in reducing runoff, soil loss, and nutrient loss from these soils. Runoff ranged from 13% of incident rainfall for the conventional cultivation to 29% under bare conditions during the highest rainfall year, and was well correlated with event rainfall and rainfall energy. Soil loss ranged from 30 t/ha. year under bare conditions to <6 t/ha. year under cropping. Nutrient losses of 35 kg N and 35 kg P/ha. year under bare conditions and 17 kg N and 11 kg P/ha. year under cropping were measured. Soil carbon analyses showed a relationship with treatment runoff, suggesting that soil properties influenced the rainfall runoff response. The cropping systems model PERFECT was calibrated using runoff, soil loss, and soil water data. Runoff and soil loss showed good agreement with observed data in the calibration, and soil water and yield had reasonable agreement. Longterm runs using historical weather data showed the episodic nature of runoff and soil loss events in this region and emphasise the need to manage land using protective measures such as conservation cropping practices. Farmers involved in related, action-learning activities wished to incorporate conservation cropping findings into their systems but also needed clear production benefits to hasten practice change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The proposed project focuses on developing research-based indicators that growers and extensionists can use to assess soil health status (including key chemical, physical and biological variables), as well as extension approaches to communicate soil health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Work with Land and Water Australia to coordinate soil health work across Queensland and Australia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Workshops to increase participants understanding and knowledge by farm businesses and healthy catchments farmers about the role of soil health in supporting sustainable through variable circumstances, farm businesses and healthy catchments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Extensive cattle grazing is the dominant land use in northern Australia. It has been suggested that grazing intensity and rainfall have profound effects on the dynamics of soil nutrients in northern Australia’s semi-arid rangelands. Previous studies have found positive, neutral and negative effects of grazing pressure on soil nutrients. These inconsistencies could be due to short-term experiments that do not capture the slow dynamics of some soil nutrients and the effects of interannual variability in rainfall. In a long-term cattle grazing trial in northern Australia on Brown Sodosol–Yellow Kandosol complex, we analysed soil organic matter and mineral nitrogen in surface soils (0–10 cm depth) 11, 12 and 16 years after trial establishment on experimental plots representing moderate stocking (stocked at the long-term carrying capacity for the region) and heavy stocking (stocked at twice the long-term carrying capacity). Higher soil organic matter was found under heavy stocking, although grazing treatment had little effect on mineral and total soil nitrogen. Interannual variability had a large effect on soil mineral nitrogen, but not on soil organic matter, suggesting that soil nitrogen levels observed in this soil complex may be affected by other indirect pathways, such as climate. The effect of interannual variability in rainfall and the effects of other soil types need to be explored further.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna–soil structure interactions, (ii) functional dynamics of macrofauna taxa,and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The grazing lands of northern Australia contain a substantial soil organic carbon (SOC) stock due to the large land area. Manipulating SOC stocks through grazing management has been presented as an option to offset national greenhouse gas emissions from agriculture and other industries. However, research into the response of SOC stocks to a range of management activities has variously shown positive, negative or negligible change. This uncertainty in predicting change in SOC stocks represents high project risk for government and industry in relation to SOC sequestration programs. In this paper, we seek to address the uncertainty in SOC stock prediction by assessing relationships between SOC stocks and grazing land condition indicators. We reviewed the literature to identify land condition indicators for analysis and tested relationships between identified land condition indicators and SOC stock using data from a paired-site sampling experiment (10 sites). We subsequently collated SOC stock datasets at two scales (quadrat and paddock) from across northern Australia (329 sites) to compare with the findings of the paired-site sampling experiment with the aim of identifying the land condition indicators that had the strongest relationship with SOC stock. The land condition indicators most closely correlated with SOC stocks across datasets and analysis scales were tree basal area, tree canopy cover, ground cover, pasture biomass and the density of perennial grass tussocks. In combination with soil type, these indicators accounted for up to 42% of the variation in the residuals after climate effects were removed. However, we found that responses often interacted with soil type, adding complexity and increasing the uncertainty associated with predicting SOC stock change at any particular location. We recommend that caution be exercised when considering SOC offset projects in northern Australian grazing lands due to the risk of incorrectly predicting changes in SOC stocks with change in land condition indicators and management activities for a particular paddock or property. Despite the uncertainty for generating SOC sequestration income, undertaking management activities to improve land condition is likely to have desirable complementary benefits such as improving productivity and profitability as well as reducing adverse environmental impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tillage is defined here in a broad sense, including disturbance of the soil and crop residues, wheel traffic and sowing opportunities. In sub-tropical, semi-arid cropping areas in Australia, tillage systems have evolved from intensively tilled bare fallow systems, with high soil losses, to reduced and no tillage systems. In recent years, the use of controlled traffic has also increased. These conservation tillage systems are successful in reducing water erosion of soil and sediment-bound chemicals. Control of runoff of dissolved nutrients and weakly sorbed chemicals is less certain. Adoption of new practices appears to have been related to practical and economic considerations, and proved to be more profitable after a considerable period of research and development. However there are still challenges. One challenge is to ensure that systems that reduce soil erosion, which may involve greater use of chemicals, do not degrade water quality in streams. Another challenge is to ensure that systems that improve water entry do not increase drainage below the crop root zone, which would increase the risk of salinity. Better understanding of how tillage practices influence soil hydrology, runoff and erosion processes should lead to better tillage systems and enable better management of risks to water quality and soil health. Finally, the need to determine the effectiveness of in-field management practices in achieving stream water quality targets in large, multi-land use catchments will challenge our current knowledge base and the tools available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adoption of conservation tillage practices on Red Ferrosol soils in the inland Burnett area of south-east Queensland has been shown to reduce runoff and subsequent soil erosion. However, improved infiltration resulting from these measures has not improved crop performance and there are suggestions of increased loss of soil water via deep drainage. This paper reports data monitoring soil water under real and artificial rainfall events in commercial fields and long-term tillage experiments, and uses the data to explore the rate and mechanisms of deep drainage in this soil type. Soils were characterised by large drainable porosities (≥0.10 m3/m3) in all parts of the profile to depths of 1.50 m, with drainable porosity similar to available water content (AWC) at 0.25 and 0.75 m, but >60% higher than AWC at 1.50 m. Hydraulic conductivity immediately below the tilled layer in both continuously cropped soils and those after a ley pasture phase was shown to decline with increasing soil moisture content, although the rate of decline was much greater in continuously cropped soil. At moisture contents approaching the drained upper limit (pore water pressure = -100cm H2O), estimates of saturated hydraulic conductivity after a ley pasture were 3-5 times greater than in continuously cropped soil, suggesting much greater rates of deep drainage in the former when soils are moist. Hydraulic tensiometers and fringe capacitance sensors monitored during real and artificial rainfall events showed evidence of soils approaching saturation in the surface layers (top 0.30-0.40 m), but there was no evidence of soil moistures exceeding the drained upper limit (i.e. pore water pressures ≤ -100 cm H2O) in deeper layers. Recovery of applied soil water within the top 1.00-1.20 m of the profile during or immediately after rainfall events declined as the starting profile moisture content increased. These effects were consistent with very rapid rates of internal drainage. Sensors deeper in the profile were unable to detect this drainage due to either non-uniformity of conducting macropores (i.e. bypass flow) or unsaturated conductivities in deeper layers that far exceed the saturated hydraulic conductivity of the infiltration throttle at the bottom of the cultivated layer. Large increases in unsaturated hydraulic conductivities are likely with only small increases in water content above the drained upper limit. Further studies with drainage lysimeters and large banks of hydraulic tensiometers are planned to quantify drainage risk in these soil types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantifying the impacts of rehabilitating degraded lands on soil health, pastures, runoff, erosion, nutrient and sediment movement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Project Objectives: 1. Improving yield and water use efficiency of the wheat crop, the backbone of the Australia grains industry, by better matching management, variety, soil and climate. The aim is thus increasing kg grain/ha per mm evapotranspiration and kg grain/ha per mm rain. 2. Improving land and water productivity and profit by better arrangement of the components of the cropping system. This involves better allocation of farm resources (land, water, machinery, labour) and identifying strategies that account for trade-offs between profit and risk. The aim is thus improving $/ha per year and mm rain in a risk framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events.Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg haˉ¹ per event while losses of N and P ranged from 10 to 1900 g haˉ¹ and from 1 to 71 g haˉ¹ per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg lˉ¹), total N (range: 101-4000 ug lˉ¹) and total P (range: 14-609 ug lˉ¹). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent.Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg lˉ¹), total N (range: 650-6350 ug lˉ¹) and total P (range: 50-1500 ug lˉ¹) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes.These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One major benefit of land application of biosolids is to supply nitrogen (N) for agricultural crops, and understanding mineralisation processes is the key for better N-management strategies. Field studies were conducted to investigate the process of mineralisation of three biosolids products (aerobic, anaerobic, and thermally dried biosolids) incorporated into four different soils at rates of 7-90 wet t/ha in subtropical Queensland. Two of these studies also examined mineralisation rates of commonly used organic amendments (composts, manures, and sugarcane mill muds). Organic N in all biosolids products mineralised very rapidly under ambient conditions in subtropical Queensland, with rates much faster than from other common amendments. Biosolids mineralisation rates ranged from 30 to 80% of applied N during periods ranging from 3.5 to 18 months after biosolids application; these rates were much higher than those suggested in the biosolids land application guidelines established by the NSW EPA (15% for anaerobic and 25% for aerobic biosolids). There was no consistently significant difference in mineralisation rate between aerobic and anaerobic biosolids in our studies. When applied at similar rates of N addition, other organic amendments supplied much less N to the soil mineral N and plant N pools during the crop season. A significant proportion of the applied biosolids total N (up to 60%) was unaccounted for at the end of the observation period. High rates of N addition in calculated Nitrogen Limited Biosolids Application Rates (850-1250 kg N/ha) resulted in excessive accumulation of mineral N in the soil profile, which increases the environmental risks due to leaching, runoff, or gaseous N losses. Moreover, the rapid mineralisation of the biosolids organic N in these subtropical environments suggests that biosolids should be applied at lower rates than in temperate areas, and that care must be taken with the timing to maximise plant uptake and minimise possible leaching, runoff, or denitrification losses of mineralised N.