20 resultados para Software geomere Cabri II
em eResearch Archive - Queensland Department of Agriculture
Resumo:
NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.
Resumo:
In recent years many sorghum producers in the more marginal (<600 mm annual rainfall) cropping areas of Qld and northern NSW have utilised skip row configurations in an attempt to improve yield reliability and reduce sorghum production risk. But will this work in the long run? What are the trade-offs between productivity and risk of crop failure? This paper describes a modelling and simulation approach to study the long-term effects of skip row configurations. Detailed measurements of light interception and water extraction from sorghum crops grown in solid, single and double skip row configurations were collected from three on-farm participatory research trials established in southern Qld and northern NSW. These measurements resulted in changes to the model that accounted for the elliptical water uptake pattern below the crop row and reduced total light interception associated with the leaf area reduction of the skip configuration. Following validation of the model, long-term simulation runs using historical weather data were used to determine the value of skip row sorghum production as a means of maintaining yield reliability in the dryland cropping regions of southern Qld and northern NSW.
Resumo:
This study used faecal pellets to investigate the broadscale distribution and diet of koalas in the mulgalands biogeographic region of south-west Queensland. Koala distribution was determined by conducting faecal pellet searches within a 30-cm radius of the base of eucalypts on 149 belt transects, located using a multi-scaled stratified sampling design. Cuticular analysis of pellets collected ffom 22 of these sites was conducted to identify the dietary composition of koalas within the region. Our data suggest that koala distribution is concentrated in the northern and more easterly regions of the study area, and appears to be strongly linked with annual rainfall. Over 50% of our koala records were obtained from non-riverine communities, indicating that koalas in the study area are not primarily restricted to riverine communities, as bas frequently been suggested. Cuticular analysis indicates that more than 90% of koala diet within the region consists of five eucalypt species. Our data highlights the importance of residual Tertiary landforms to koala conservation in the region.
Resumo:
In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.
Resumo:
Background: With the advances in DNA sequencer-based technologies, it has become possible to automate several steps of the genotyping process leading to increased throughput. To efficiently handle the large amounts of genotypic data generated and help with quality control, there is a strong need for a software system that can help with the tracking of samples and capture and management of data at different steps of the process. Such systems, while serving to manage the workflow precisely, also encourage good laboratory practice by standardizing protocols, recording and annotating data from every step of the workflow Results: A laboratory information management system (LIMS) has been designed and implemented at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) that meets the requirements of a moderately high throughput molecular genotyping facility. The application is designed as modules and is simple to learn and use. The application leads the user through each step of the process from starting an experiment to the storing of output data from the genotype detection step with auto-binning of alleles; thus ensuring that every DNA sample is handled in an identical manner and all the necessary data are captured. The application keeps track of DNA samples and generated data. Data entry into the system is through the use of forms for file uploads. The LIMS provides functions to trace back to the electrophoresis gel files or sample source for any genotypic data and for repeating experiments. The LIMS is being presently used for the capture of high throughput SSR (simple-sequence repeat) genotyping data from the legume (chickpea, groundnut and pigeonpea) and cereal (sorghum and millets) crops of importance in the semi-arid tropics. Conclusions: A laboratory information management system is available that has been found useful in the management of microsatellite genotype data in a moderately high throughput genotyping laboratory. The application with source code is freely available for academic users and can be downloaded from http://www.icrisat.org/bt-software-d-lims.htm
Resumo:
We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.
Resumo:
Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This 'stay-green' trait has been related to the nitrogen (N) supply-demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply-demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.
Resumo:
Models are abstractions of reality that have predetermined limits (often not consciously thought through) on what problem domains the models can be used to explore. These limits are determined by the range of observed data used to construct and validate the model. However, it is important to remember that operating the model beyond these limits, one of the reasons for building the model in the first place, potentially brings unwanted behaviour and thus reduces the usefulness of the model. Our experience with the Agricultural Production Systems Simulator (APSIM), a farming systems model, has led us to adapt techniques from the disciplines of modelling and software development to create a model development process. This process is simple, easy to follow, and brings a much higher level of stability to the development effort, which then delivers a much more useful model. A major part of the process relies on having a range of detailed model tests (unit, simulation, sensibility, validation) that exercise a model at various levels (sub-model, model and simulation). To underline the usefulness of testing, we examine several case studies where simulated output can be compared with simple relationships. For example, output is compared with crop water use efficiency relationships gleaned from the literature to check that the model reproduces the expected function. Similarly, another case study attempts to reproduce generalised hydrological relationships found in the literature. This paper then describes a simple model development process (using version control, automated testing and differencing tools), that will enhance the reliability and usefulness of a model.
Resumo:
The project renewed the Breedcow and Dynama software making it compatible with modern computer operating systems and platforms. Enhancements were also made to the linkages between the individual programs and their operation. The suite of programs is a critical component of the skill set required to make soundly based plans and production choices in the north Australian beef industry.
Resumo:
Leading Sheep is an education framework for leading the adoption of new technologies and practices to increase the productivity of the Queensland sheep industry.
Resumo:
Making More from Sheep (MMfS) is a majority market extension program funded by Meat & Livestock Australia (MLA) and Australian Wool Innovation (AWI). Phase II of MMfS commenced in Queensland with a business planning process in October 2010 and delivery from November 2010 until November 2013. Mr Tony Hamilton of the Department of Agriculture, Fisheries and Forestry (DAFF) was initially the State Coordinator with responsibility for planning, project implementation, monitoring and evaluation. He was replaced by Ms Nicole Sallur from DAFF towards the end of the project. Delivery involving partner organisations provided best practice management information and tools to sheep producers with target Key Performance Indicators (KPI’s) exceeded across all three tiers of engagement category. 31 events were delivered to 551 participants. Satisfaction and value scores averaged across all events measured 8.7 and 8.2 respectively. Operational recommendations have been included in the report.
Resumo:
Jointly manage The Farm Program within the Cotton Catchment Communities CRC.
Improved understanding of the damage, ecology, and management of mirids and stinkbugs in Bollgard II
Resumo:
In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.
Resumo:
The 'insurance' sprays by the growers run the risk of flaring secondary pests such as whitefly, mites and aphids. Although recent research on mirids has addressed some aspects of this issue, further effort is needed to refine mirid management.
Resumo:
The studies of Allen (2011) and Allen et al. (2011) recently examined the methodology underpinning claims that dingoes provide net benefits to biodiversity by suppressing foxes and cats. They found most studies to have design flaws and/or observational methods that preclude valid interpretations from the data, describing most of the current literature as ‘wild dogma’. In this short supplement, we briefly highlight the roles and implications of wild dogma for wild dog management in Australia. We discuss nomenclature, and the influence that unreliable science can have on policy and practice changes related to apex predator management.