21 resultados para Software defect prediction
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.
Resumo:
Traps baited with synthetic aggregation pheromone and fermenting bread dough were used to monitor seasonal incidence and abundance of the ripening fruit pests, Carpophilus hemipterus (L.), C. mutilatus Erichson and C. davidsoni Dobson in stone fruit orchards in the Leeton district of southern New South Wales during five seasons (1991-96). Adult beetles were trapped from September-May, but abundance varied considerably between years with the amount of rainfall in December-January having a major influence on population size and damage potential during the canning peach harvest (late February-March). Below average rainfall in December-January was associated with mean trap catches of < 10 beetles/trap/week in low dose pheromone traps during the harvest period in 1991/92 and 1993/94 and no reported damage to ripening fruit. Rainfall in December-January 1992/93 was more than double the average and mean trap catches ranged from 8-27 beetles/week during the harvest period with substantial damage to the peach crop. December-January rainfall was also above average in 1994/95 and 1995/96 and means of 50-300 beetles/trap/week were recorded in high dose pheromone traps during harvest periods. Carpophilus spp. caused economic damage to peach crops in both seasons. These data indicate that it may be possible to predict the likelihood of Carpophilus beetle damage to ripening stone fruit in inland areas of southern Australia, by routine pheromone-based monitoring of beetle populations and summer temperatures and rainfall.
Resumo:
Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.
Resumo:
Background: With the advances in DNA sequencer-based technologies, it has become possible to automate several steps of the genotyping process leading to increased throughput. To efficiently handle the large amounts of genotypic data generated and help with quality control, there is a strong need for a software system that can help with the tracking of samples and capture and management of data at different steps of the process. Such systems, while serving to manage the workflow precisely, also encourage good laboratory practice by standardizing protocols, recording and annotating data from every step of the workflow Results: A laboratory information management system (LIMS) has been designed and implemented at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) that meets the requirements of a moderately high throughput molecular genotyping facility. The application is designed as modules and is simple to learn and use. The application leads the user through each step of the process from starting an experiment to the storing of output data from the genotype detection step with auto-binning of alleles; thus ensuring that every DNA sample is handled in an identical manner and all the necessary data are captured. The application keeps track of DNA samples and generated data. Data entry into the system is through the use of forms for file uploads. The LIMS provides functions to trace back to the electrophoresis gel files or sample source for any genotypic data and for repeating experiments. The LIMS is being presently used for the capture of high throughput SSR (simple-sequence repeat) genotyping data from the legume (chickpea, groundnut and pigeonpea) and cereal (sorghum and millets) crops of importance in the semi-arid tropics. Conclusions: A laboratory information management system is available that has been found useful in the management of microsatellite genotype data in a moderately high throughput genotyping laboratory. The application with source code is freely available for academic users and can be downloaded from http://www.icrisat.org/bt-software-d-lims.htm
Resumo:
This project was designed to provide the structural softwood processing industry with the basis for improved green and dry grading to allow maximise MGP grade yields, consistent product performance and reduced processing costs. To achieve this, advanced statistical techniques were used in conjunction with state-of-the-art property measurement systems. Specifically, the project aimed to make two significant steps forward for the Australian structural softwood industry: • assessment of technologies, both existing and novel, that may lead to selection of a consistent, reliable and accurate device for the log yard and green mill. The purpose is to more accurately identify and reject material that will not make a minimum grade of MGP10 downstream; • improved correlation of grading MOE and MOR parameters in the dry mill using new analytical methods and a combination of devices. The three populations tested were stiffness-limited radiata pine, strength-limited radiata pine and Caribbean pine. Resonance tests were conducted on logs prior to sawmilling, and on boards. Raw data from existing in-line systems were captured for the green and dry boards. The dataset was analysed using classical and advanced statistical tools to provide correlations between data sets and to develop efficient strength and stiffness prediction equations. Stiffness and strength prediction algorithms were developed from raw and combined parameters. Parameters were analysed for comparison of prediction capabilities using in-line parameters, off-line parameters and a combination of in-line and off-line parameters. The results show that acoustic resonance techniques have potential for log assessment, to sort for low stiffness and/or low strength, depending on the resource. From the log measurements, a strong correlation was found between the average static MOE of the dried boards within a log and the predicted value. These results have application in segregating logs into structural and non-structural uses. Some commercial technologies are already available for this application such as Hitman LG640. For green boards it was found that in-line and laboratory acoustic devices can provide a good prediction of dry static MOE and moderate prediction for MOR.There is high potential for segregating boards at this stage of processing. Grading after the log breakdown can improve significantly the effectiveness of the mill. Subsequently, reductions in non-structural volumes can be achieved. Depending on the resource it can be expected that a 5 to 8 % reduction in non structural boards won’t be dried with an associated saving of $70 to 85/m3. For dry boards, vibration and a standard Metriguard CLT/HCLT provided a similar level of prediction on stiffness limited resource. However, Metriguard provides a better strength prediction in strength limited resources (due to this equipment’s ability to measure local characteristics). The combination of grading equipment specifically for stiffness related predictors (Metriguard or vibration) with defect detection systems (optical or X-ray scanner) provides a higher level of prediction, especially for MOR. Several commercial technologies are already available for acoustic grading on board such those from Microtec, Luxscan, Falcon engineering or Dynalyse AB for example. Differing combinations of equipment, and their strategic location within the processing chain, can dramatically improve the efficiency of the mill, the level of which will vary depending of the resource. For example, an initial acoustic sorting on green boards combined with an optical scanner associated with an acoustic system for grading dry board can result in a large reduction of the proportion of low value low non-structural produced. The application of classical MLR on several predictors proved to be effective, in particular for MOR predictions. However, the usage of a modern statistics approach(chemometrics tools) such as PLS proved to be more efficient for improving the level of prediction. Compared to existing technologies, the results of the project indicate a good improvement potential for grading in the green mill, ahead of kiln drying and subsequent cost-adding processes. The next stage is the development and refinement of systems for this purpose.
Resumo:
The key outcome will be to identify a technology that is practical to use to scan logs identified by the modelling as suspect or marginal for sawing and to confirm their unsuitability for value adding sawing by internal scanning.
Resumo:
BACKGROUND: The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. RESULTS: It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. CONCLUSION: The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados.
Resumo:
Models are abstractions of reality that have predetermined limits (often not consciously thought through) on what problem domains the models can be used to explore. These limits are determined by the range of observed data used to construct and validate the model. However, it is important to remember that operating the model beyond these limits, one of the reasons for building the model in the first place, potentially brings unwanted behaviour and thus reduces the usefulness of the model. Our experience with the Agricultural Production Systems Simulator (APSIM), a farming systems model, has led us to adapt techniques from the disciplines of modelling and software development to create a model development process. This process is simple, easy to follow, and brings a much higher level of stability to the development effort, which then delivers a much more useful model. A major part of the process relies on having a range of detailed model tests (unit, simulation, sensibility, validation) that exercise a model at various levels (sub-model, model and simulation). To underline the usefulness of testing, we examine several case studies where simulated output can be compared with simple relationships. For example, output is compared with crop water use efficiency relationships gleaned from the literature to check that the model reproduces the expected function. Similarly, another case study attempts to reproduce generalised hydrological relationships found in the literature. This paper then describes a simple model development process (using version control, automated testing and differencing tools), that will enhance the reliability and usefulness of a model.
Resumo:
The project renewed the Breedcow and Dynama software making it compatible with modern computer operating systems and platforms. Enhancements were also made to the linkages between the individual programs and their operation. The suite of programs is a critical component of the skill set required to make soundly based plans and production choices in the north Australian beef industry.
Resumo:
Queensland's hardwood plantation industry is producing increasing volumes of sawlog, veneer and poles. Wood quality can sometimes be impaired in some plantation hardwoods when the growing trees are attacked by insect borers. Susceptibility to borer damage varies with the species as well as site conditions or location. The risk model developed from this project will enable the plantation industry to match tree species with appropriate growing conditions in Queensland.
Resumo:
Defect elimination in wheat. Black point in bread wheat.
Resumo:
Acidity in terms of pH and titratable acids influences the texture and flavour of fermented dairy products, such as Kefir. However, the methods for determining pH and titratable acidity (TA) are time consuming. Near infrared (NIR) spectroscopy is a non-destructive method, which simultaneously predicts multiple traits from a single scan and can be used to predict pH and TA. The best pH NIR calibration model was obtained with no spectral pre-treatment applied, whereas smoothing was found to be the best pre-treatment to develop the TA calibration model. Using cross-validation, the prediction results were found acceptable for both pH and TA. With external validation, similar results were found for pH and TA, and both models were found to be acceptable for screening purposes.
Resumo:
Hip height, body condition, subcutaneous fat, eye muscle area, percentage Bos taurus, fetal age and diet digestibility data were collected at 17 372 assessments on 2181 Brahman and tropical composite (average 28% Brahman) female cattle aged between 0.5 and 7.5 years of age at five sites across Queensland. The study validated the subtraction of previously published estimates of gravid uterine weight to correct liveweight to the non-pregnant status. Hip height and liveweight were linearly related (Brahman: P<0.001, R-2 = 58%; tropical composite P<0.001, R-2 = 67%). Liveweight varied by 12-14% per body condition score (5-point scale) as cows differed from moderate condition (P<0.01). Parallel effects were also found due to subcutaneous rump fat depth and eye muscle area, which were highly correlated with each other and body condition score (r = 0.7-0.8). Liveweight differed from average by 1.65-1.66% per mm of rump fat depth and 0.71-0.76% per cm(2) of eye muscle area (P<0.01). Estimated dry matter digestibility of pasture consumed had no consistent effect in predicting liveweight and was therefore excluded from final models. A method developed to estimate full liveweight of post-weaning age female beef cattle from the other measures taken predicted liveweight to within 10 and 23% of that recorded for 65 and 95% of cases, respectively. For a 95% chance of predicted group average liveweight (body condition score used) being within 5, 4, 3, 2 and 1% of actual group average liveweight required 23, 36, 62, 137 and 521 females, respectively, if precision and accuracy of measurements matches that used in the research. Non-pregnant Bos taurus female cattle were calculated to be 10-40% heavier than Brahmans at the same hip height and body condition, indicating a substantial conformational difference. The liveweight prediction method was applied to a validation population of 83 unrelated groups of cattle weighed in extensive commercial situations on 119 days over 18 months (20 917 assessments). Liveweight prediction in the validation population exceeded average recorded liveweight for weigh groups by an average of 19 kg (similar to 6%) demonstrating the difficulty of achieving accurate and precise animal measurements under extensive commercial grazing conditions.
Resumo:
Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.