2 resultados para Snow, Neil
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.
Resumo:
We trace the evolution of the representation of management in cropping and grazing systems models, from fixed annual schedules of identical actions in single paddocks toward flexible scripts of rules. Attempts to define higher-level organizing concepts in management policies, and to analyse them to identify optimal plans, have focussed on questions relating to grazing management owing to its inherent complexity. “Rule templates” assist the re-use of complex management scripts by bundling commonly-used collections of rules with an interface through which key parameters can be input by a simulation builder. Standard issues relating to parameter estimation and uncertainty apply to management sub-models and need to be addressed. Techniques for embodying farmers' expectations and plans for the future within modelling analyses need to be further developed, especially better linking planning- and rule-based approaches to farm management and analysing the ways that managers can learn.