6 resultados para Sharing the Cost of a Public Good: an Incentive-Constrained Axiomatic Approach
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The feasibility of state-wide eradication of 41 invasive plant taxa currently listed as ‘Class 1 declared pests’ under the Queensland Land Protection (Pest and Stock Route Management) Act 2002 was assessed using the predictive model ‘WeedSearch’. Results indicated that all but one species (Alternanthera philoxeroides) could be eradicated, provided sufficient funding and labour were available. Slightly less than one quarter (24.4%) (n = 10) of Class 1 weed taxa could be eradicated for less than $100 000 per taxon. An additional 43.9% (n = 18) could be eradicated for between $100 000 and $1M per taxon. Hence, 68.3% of Class 1 weed taxa (n = 28) could be eradicated for less than $1M per taxon. Eradication of 29.3% (n = 12) is predicted to cost more than $1M per taxon. Comparison of these WeedSearch outputs with either empirical analysis or results from a previous application of the model suggests that these costs may, in fact, be underestimates. Considering the likelihood that each weed will cost the state many millions of dollars in long-term losses (e.g. losses to primary production, environmental impacts and control costs), eradication seems a wise investment. Even where predicted costs are over $1M, eradication can still offer highly favourable benefit:cost ratios. The total (cumulative) cost of eradication of all 41 weed taxa is substantial; for all taxa, the estimated cost of eradication in the first year alone is $8 618 000. This study provides important information for policy makers, who must decide where to invest public funding.
Resumo:
The focus of this article is on the cost-effectiveness of mitigation strategies to reduce pollution loads and improve water quality in South-East Queensland. Scenarios were developed about the types of catchment interventions that could be considered, and the resulting changes in water quality indicators that may result. Once these catchment scenarios were modelled, the range of expected outcomes was assessed and the costs of mitigation interventions were estimated. Strategies considered include point and non-point source interventions. Predicted reductions in pollution levels were calculated for each action based on the expected population growth. The cost of the interventions included the full investment and annual running costs as well as planned public investment by the state agencies. Cost-effectiveness of strategies is likely to vary according to whether suspended sediments, nitrogen or phosphorus loads are being targeted.
Resumo:
A simulation model that combines biological, search and economic components is applied to the eradication of a Miconia calvescens infestation at El Arish in tropical Queensland, Australia. Information on the year M. calvescens was introduced to the site, the number of plants controlled and the timing of control, is used to show that currently there could be M. calvescens plants remaining undetected at the site, including some mature plants. Modelling results indicate that the eradication programme has had a significant impact on the population of M. calvescens, as shown by simulated results for uncontrolled and controlled populations. The model was also used to investigate the effect of changing search effort on the cost of and time to eradication. Control costs were found to be negligible over all levels of search effort tested. Importantly, results suggest eradication may be achieved within several decades, if resources are increased slightly from their current levels and if there is a long-term commitment to funding the eradication programme.
Resumo:
Standards for farm animal welfare are variously managed at a national level by government-led regulatory control, by consumer-led welfare economics and co-regulated control in a partnership between industry and government. In the latter case the control of research to support animal welfare standards by the relevant industry body may lead to a conflict of interest on the part of researchers, who are dependent on industry for continued research funding. We examine this dilemma by reviewing two case studies of research published under an Australian co-regulated control system. Evidence of unsupported conclusions that are favourable to industry is provided, suggesting that researchers do experience a conflict of interest that may influence the integrity of the research. Alternative models for the management of research are discussed, including the establishment of an independent research management body for animal welfare because of its public good status and the use of public money derived from taxation, with representation from government, industry, consumers, and advocacy groups.
Resumo:
Converting from an existing irrigation system is often seen as high risk by the land owner. The significant financial investment and the long period over which the investment runs is also complicated by the uncertainty associated with long term input costs (such as energy), crop production, and the continually evolving natural resource management rules and policy. Irrigation plays a pivotal part in the Burdekin sugarcane farming system. At present the use of furrow irrigation is by far the most common form due to the ease of use, relatively low operating cost and well established infrastructure currently in place. The Mulgrave Area Farmer Integrated Action (MAFIA) grower group, located near Clare in the lower Burdekin region, identified the need to learn about sustainable farming systems with a focus on the environment, social and economic implications. In early 2007, Hesp Faming established a site to investigate the use of overhead irrigation as an alternative to furrow irrigation and its integration with new farming system practices, including Green Cane Trash Blanketing (GCTB). Although significant environmental and social benefits exist, the preliminary investment analysis indicates that the Overhead Low Pressure (OHLP) irrigation system is not adding financial value to the Hesp Farming business. A combination of high capital costs and other offsetting factors resulted in the benefits not being fully realised. A different outcome is achieved if Hesp Farming is able to realise value on the water saved, with both OHLP irrigation systems displaying a positive NPV. This case study provides a framework to further investigate the economics of OHLP irrigation in sugarcane and it is anticipated that with additional data a more definitive outcome will be developed in the future.
Resumo:
Anthracnose and stem end rots are the main postharvest diseases affecting mangoes in Australia and limiting the shelf life of fruits whenever they are not controlled. The management of these diseases has often relied on the use of fungicide applications either as field spray treatments, postharvest dips or both. Because of concerns with continuous fungicide use, other options for the sustainable management of these diseases are needed. Field trials were conducted to assess the efficacy of three plant activators for the control of these diseases over a 2-year period on 20-year old ‘R2E2’ mango trees in north Queensland. The activators evaluated were: Bion, Kasil and Mangocote. The efficacy of these activators was compared with that of a standard industry field spray program using a combination of fungicides, as well as to un¬treated controls. Conditions favoured good development of the target diseases in both years to be able to differentiate treatment effects. Kasil as a drench was as effective as the standard fungicide program on the management of anthracnose and stem end rots. Bion as foliar sprays showed similar efficacy with its effectiveness comparable with the standard spray program. Both activators had significantly less disease incidences when compared with the untreated control. The third activator, Mangocote was not very effective in controlling the target diseases. Its effect was not significantly better than the untreated controls. The results from this 2-year study suggest that plant activators can play an effective role in mango postharvest disease management. Proper timing could reduce the number of fungicide sprays in an integrated disease management program enabling sustainable yields of quality fruits without the continuous concerns of health and environmental risks from continuous reliance on fungicide use.