27 resultados para Shaped Pores
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Electroreception is an ancient sense found in many aquatic animals, including sharks, which may be used in the detection of prey, predators and mates. Wobbegong sharks (Orectolobidae) and angel sharks (Squatinidae) represent two distantly related families that have independently evolved a similar dorso-ventrally compressed body form to complement their benthic ambush feeding strategy. Consequently, these groups represent useful models in which to investigate the specific morphological and physiological adaptations that are driven by the adoption of a benthic lifestyle. In this study, we compared the distribution and abundance of electrosensory pores in the spotted wobbegong shark (Orectolobus maculatus) with the Australian angel shark (Squatina australis) to determine whether both species display a similar pattern of clustering of sub-dermal electroreceptors and to further understand the functional importance of electroreception in the feeding behaviour of these benthic sharks. Orectolobus maculatus has a more complex electrosensory system than S. australis, with a higher abundance of pores and an additional cluster of electroreceptors positioned in the snout (the superficial ophthalmic cluster). Interestingly, both species possess a cluster of pores (the hyoid cluster, positioned slightly posterior to the first gill slit) more commonly found in rays, but which may be present in all benthic elasmobranchs to assist in the detection of approaching predators.
Resumo:
* The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. * Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. * Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. * Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies.
Resumo:
Genetic engineering is an attractive method for changing a single characteristic of ‘Smooth Cayenne’ pineapple, without altering its other desirable attributes. Techniques used in pineapple transformation, however, such as tissue culture and biolistic-mediated or Agrobacterium-mediated gene insertion are prone to somaclonal variation, resulting in the production of several morphological mutations (Smith et al., 2002). Fruit mutations can include distortion in fruit shape (round ball, conical, fan-shaped), reduced fruit size, multiple crowns, crownless fruit, fruitless crowns, and spiny crown leaves (Dalldorf, 1975; Sanewski et al., 1992). The present paper describes the variability in fruit-shape mutations between transgenic and non-transgenic fruit, and its subsequent impact on organoleptic characteristics.
Resumo:
The genus Quambalaria consists of plant-pathogenic fungi causing disease on leaves and shoots of species of Eucalyptus and its close relative, Corymbia. The phylogenetic relationship of Quambalaria spp., previously classified in genera such as Sporothrix and Ramularia, has never been addressed. It has, however, been suggested that they belong to the basidiomycete orders Exobasidiales or Ustilaginales. The aim of this study was thus to consider the ordinal relationships of Q. eucalypti and Q. pitereka using ribosomal LSU sequences. Sequence data from the ITS nrDNA were used to determine the phylogenetic relationship of the two Quambalaria species together with Fugomyces (= Cerinosterus) cyanescens. In addition to sequence data, the ultrastructure of the septal pores of the species in question was compared. From the LSU sequence data it was concluded that Quambalaria spp. and F. cyanescens form a monophyletic clade in the Microstromatales, an order of the Ustilaginomycetes. Sequences from the ITS region confirmed that Q. pitereka and Q. eucalypti are distinct species. The ex-type isolate of F. cyanescens, together with another isolate from Eucalyptus in Australia, constitute a third species of Quambalaria, Q. cyanescens (de Hoog & G.A. de Vries) Z.W. de Beer, Begerow & R. Bauer comb. nov. Transmission electron-microscopic studies of the septal pores confirm that all three Quambalaria spp. have dolipores with swollen lips, which differ from other members of the Microstromatales (i.e. the Microstromataceae and Volvocisporiaceae) that have simple pores with more or less rounded pore lips. Based on their unique ultrastructural features and the monophyly of the three Quambalaria spp. in the Microstromatales, a new family, Quambalariaceae Z.W. de Beer, Begerow & R. Bauer fam. nov., is described.
Resumo:
Twelve nasal swabs were collected from yearling horses with respiratory distress and tested for equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4) by real-time PCR targeting the glycoprotein B gene. All samples were negative for EHV-1; however, 3 were positive for EHV-4. When these samples were tested for EHV-2 and EHV-5 by PCR, all samples were negative for EHV-2 and 11 were positive for EHV-5. All three samples that were positive for EHV-4 were also positive for EHV-5. These three samples gave a limited CPE in ED cells reminiscent of EHV-4 CPE. EHV-4 CPE was obvious after 3 days and was characterised by syncytia. None of the samples produced cytopathic effect (CPE) on African green monkey kidney (Vero) cells or hamster kidney (BSR) cells. Four of the samples, which were positive in the EHV-5 PCR, produced CPE on rabbit kidney (RK13) cells and equine dermis (ED) cells. EHV-5 CPE on both cell lines was slow and was apparent after four 7-day passages. On RK13 cells, the CPE was characteristic of equid herpesvirus, with the formation of syncytia. However, in ED cells, the CPE was characterised by ring-shaped syncytia. For the first time, a case of equine respiratory disease involving dual infection with EHV-4 and EHV-5 has been reported in Queensland (Australia). This was shown by simultaneously isolating EHV-4 and EHV-5 from clinical samples. EHV5 was recovered from all samples except one, suggesting that EHV5 was more prevalent in young horses than EHV2.
Resumo:
This study provides comprehensive documentation of silk production in the pest moth Helicoverpa armigera from gland secretion to extrusion of silk thread. The structure of the silk glands, accessory structures and extrusion apparatus are reported. The general schema of the paired silk glands follows that found for Lepidoptera. Morphology of the duct, silk press, muscle attachments and spigot are presented as a three-dimensional reconstruction and the cuticular crescent-shaped profile of the silk press is demonstrated in both open and closed forms with attendant muscle blocks, allowing advances in our knowledge of how the silk press functions to regulate the extrusion of silk. Growth of the spigot across instars is documented showing a distinctive developmental pattern for this extrusion device. Its shape and structure are related to use and load-bearing activity.
Resumo:
The stiletto fly subfamily Agapophytinae is diverse and species rich in Australasia, with numerous undescribed species. A new species of Acraspisoides Hill & Winterton, A. monticola sp. nov., is described from females collected in montane localities in eastern Australia. Eight new species of Bonjeania Irwin & Lyneborg are also described, raising the total number of known species to 18. Five new species, B. affinis sp. nov., B. apluda sp. nov., B. bapsis sp. nov., B. webbi sp. nov. and B. zwicki sp. nov., all have a distinctive, forward-protruding head with antennae on a raised tubercle. Two other new species, B. argentea sp. nov. and B. jefferiesi sp. nov., are closely related to B. segnis (White), with very similar shaped male genitalia and body shape. An eighth species, B. lambkinae sp. nov., is closely related to B. clamosis Winterton & Skevington. Bonjeania and Acraspisoides are diagnosed and revised keys to species presented. An unusual new therevid, Vomerina humbug gen. et sp. nov., is also described and figured based on a series of males from New South Wales. This new genus likely represents the sister taxon to Bonjeania.
Resumo:
A rust causing leaf spotting and distortion of twigs and branches of Caesalpinia scortechinii in Queensland is described as the new species Bibulocystis gloriosa. Uredinia and telia occur on spotted pinnules, and pycnia, aecial uredinia and telia on galled and twisted leaf rachides, twigs and branches. B. gloriosa is similar to Bibulocystis viennotii on Albizia granulosa in New Caledonia in having a macrocyclic life cycle with all spore states, and teliospores with two fertile cells and two cysts. It differs in having aecial urediniospores and urediniospores with uniformly thickened walls and several scattered germ pores, rather than the apically thickened walls and equatorial germ pores of B. viennotii. Teliospores in the two species are similar in size, but those of B. gloriosa have proportionally larger fertile cells and smaller cysts than in B. viennotii. To date, B. gloriosa is known from only two localities in south-eastern Queensland. Comparison with the type specimen of Spumula caesalpiniae on Caesalpinia nuga from Indonesia has shown that the two rusts are generically distinct.
Resumo:
The powdery mildew Phyllactinia chorisiae has been considered conspecific with P. guttata. A re-examination of the type material of P. chorisiae and another specimen showed that this fungus, unlike P. guttata, has dimorphic conidia and its anamorph does not belong to the genus Ovulariopsis, which is the typical anamorph for Phyllactinia species. This suggests that P. chorisiae is morphologically distinct from P. guttata and should no longer be accepted as a synonym. Re-evaluation of type material of Oidiopsis wissadulae revealed that it has monomorphic conidia (mostly lemon-shaped) and hemiendophytic mycelium, a combination of characters that clearly places this fungus in the genus Ovulariopsis. Emended descriptions of P. chorisiae and Ovulariopsis wissadulae are presented.
Resumo:
Our evaluation of the predation of calves by wild dogs in the 1990s found that the number of calves killed and frequency of years that calf losses occurred, is higher in baited areas compared to adjoining, non-baited areas of similar size. Calf losses were highest with poor seasonal conditions, low prey numbers and where baited areas were re-colonised by wild dogs soon after baiting. We monitored wild dog “activity” before and after 35 baiting programs in southwest, central west and far north Queensland between 1994 and 2006 and found change in activity depends on the timing of the baiting. Baiting programs conducted between October and April show an increase in dog activity post-baiting (average increase of 219.1%, SEM 100.9, n=9, for programs conducted in October and November; an increase of 82.5%, SEM 54.5, n=7 for programs conducted in March and April; and a decrease in activity of 46.5%, SEM 10.2, n=19 for programs conducted between May and September). We monitored the seasonal activity and dispersal of wild dogs fitted with satellite transmitters 2006 to present. We have found that: • Activity of breeding males and females, whilst rearing and nurturing pups, is focussed around the den between July to September and away from areas of human activity. Activity of breeding groups appears to avoid locations of human activity until juveniles become independent (around late November). • While independent and solitary yearlings often have unstable, elliptically-shaped territories in less favourable areas, members of breeding groups have territories that appear seasonally stable and circular located in more favourable habitats. • Extra-territorial forays of solitary yearlings can be huge, in excess of 200 km. The largest forays we have monitored have occurred when the activity of pack members is focussed around rearing pups and juveniles (August to November). • Where wild dogs have dispersed or had significant territorial expansion, it has occurred within days of baiting programs and onto recently baited properties. • The wild dogs we have tracked have followed netting barrier fences for hundreds of kilometres and lived adjacent to or bypassed numerous grids in the barrier. Based on these studies, we conclude that a proportion of the perceived decline in dog activity between May and September, post baiting, is due to a decline in dog activity in areas associated with human activity. The increase in dog activity post-baiting between October and May (and increased calf predation on baited properties) is likely caused by wild dogs dispersing (juveniles and yearlings) or expanding (adults) their territory into baited, now ‘vacant’, areas. We hypothesise that baiting programs should be focussed in summer and autumn commencing late November as soon as juveniles become independent of adults. We also hypothesise that instead of large, annual or semi-annual baiting programs, laying the same number of baits over 4-6 weeks may be more effective. These hypotheses need to be tested through an adaptive management project.
Resumo:
Recirculating aquaculture systems have a unique anthropogenic-based soundscape which is characterized by the type of equipment utilized, the structural configuration of walls, tanks, equipment, the substrate the tanks are situated on and even the activities of the personnel operating the facility. The soundscape of recirculation facilities is inadequately understood and remains poorly characterized, although it is generally accepted that the dominant sounds found in such facilities are within the hearing range of fish. The objective of this study was to evaluate the soundscape in a recirculating aquaculture facility from an intra-tank perspective and determine how the soundscape is shaped by a range of characteristics within the facility. Sounds were recorded across an operating aquaculture facility including different tank designs. The sounds recorded fell within previously measured pressure level ranges for recirculating systems, with the highest maximum sound pressure level (SPL) recorded at 124 dB re 1 mu Pa-2/Hz (with an FFT bin width of 46.9 Hz, centered at 187.5 Hz). The soundscape within the tanks was stratified and positively correlated with depth, the highest sound pressure occurring at the base of the tanks. Each recording of the soundscape was dominated by a frequency component of 187.5 Hz (corresponding centre of the 4th 46.9 Hz FFT analysis bin) that produced the highest observed SPL Analysis of sound recordings revealed that this peak SPL was associated with the acoustic signature of the pump. The soundscape was also evaluated for impacts of tank hood position, time of day, transient sounds and airstone particle size types, all of which were found to appreciably influence sound levels and structure within the tank environment. This study further discusses the distinctiveness of the soundscape, how it is shaped by the various operating components and considers the aquaculture soundscape in relation to natural soundscapes found within aquatic tropical environments.
Resumo:
This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.
Resumo:
The physicochemical and functional properties of flours from 25 Papua New Guinean and Australian sweetpotato cultivars were evaluated. The cultivars (white-, orange-, cream-, and purple-fleshed, and with dry matter, from 15 to 28 g/100 g), were obovate, oblong, elliptic, curved, irregular in shape, and essentially thin-cortexed (1-2 mm). Flour yield was less than 90 g/100 g solids, while starch, protein, amylose, water absorption and solubility indices, as well as total sugars, varied significantly (p < 0.05). Potassium, sodium, calcium, and phosphorus were the major minerals measured, and there were differences in the pasting properties, which showed four classes of shear-thinning and shear-thickening behaviours. Differential scanning calorimetry showed single-stage gelatinisation behaviour, with cultivar-dependent temperatures (61-84 degrees C) and enthalpies (12-27 J/g dry starch). Oval-, round- and angular-shaped granules were observed with a scanning electron microscope, while X-ray diffraction revealed an A-type diffraction pattern in the cultivars, with about 30% crystallinity. This study shows a wide range of sweetpotato properties, reported for the first time.
Resumo:
The distribution and density of the ampullary electroreceptors in the skin of elasmobranchs are influenced by the phylogeny and ecology of a species. Sensory maps were created for 4 species of pristid sawfish. Their ampullary pores were separated into pore fields based on their innervation and cluster formation. Ventrally, ampullary pores are located in 6 areas (5 in Pristis microdon), covering the rostrum and head to the gills. Dorsally, pores are located in 4 areas (3 in P. microdon), which cover the rostrum, head and may extend slightly onto the pectoral fins. In all species, the highest number of pores is found on the dorsal and ventral sides of the rostrum. The high densities of pores along the rostrum combined with the low densities around the mouth could indicate that sawfish use their rostrum to stun their prey before ingesting it, but this hypothesis remains to be tested. The directions of ampullary canals on the ventral side of the rostrum are species specific. P. microdon possesses the highest number of ampullary pores, which indicates that amongst the study species this species is an electroreception specialist. As such, juvenile P. microdon inhabit low-visibility freshwater habitats.
Resumo:
The invasive liana cat’s claw creeper, Macfadyena unguis-cati, native to tropical Central and South America, is a major environmental weed in Queensland and New South Wales (NSW). Two morphologically distinct cat’s claw creeper varieties occur in Australia, a ‘short-pod’ variety that is widespread through Queensland and NSW and a ‘long-pod’ variety restricted to a few sites in southeast Queensland. In this study we report the differences in the above-ground morphological, phenological and reproductive traits between the two varieties. The ‘long-pod’ variety has significantly larger leaves, larger pods, and larger number of seeds per pod than the ‘short-pod’ variety. The ‘short-pod’ variety has a slightly wider pods, and thicker leaves than the ‘long-pod’ variety. Both varieties have a yellow trumpet shaped flower, but the flower of the ‘long-pod’ variety has a deeper hue of yellow than the ‘short-pod’ flower. The fruits of the ‘short-pod’ variety mature in late summer to early autumn while the fruits of ‘long-pod’ variety mature in late winter to early spring. The more widespread nature of the ‘short-pod’ variety could potentially be due to a preference for this variety as an ornamental plant, due to its more presentable foliage characteristics and shorter pods, in contrast to the ‘long-pod’ variety.