6 resultados para Sex object
em eResearch Archive - Queensland Department of Agriculture
Resumo:
5′ flanking regions of CYP19A1/A2 genes are reported for three sex changing fish.
Resumo:
The male attractant pheromone of the scarab beetle Holotrichia reynaudi, an agricultural pest native to southern India, was extracted from abdominal glands of females with hexane and analyzed by gas chromatography– mass spectrometry. Field testing of the candidate chemicals, indole, phenol, and anisole, both alone and as binary mixtures, led us to conclude that anisole was the major component of the sex pheromone. Neither male nor female beetles were attracted to indole or phenol on their own. Similarly, when indole and anisole were combined, the attractiveness of the solution did not increase over that obtained with anisole alone. However, combination of phenol and anisole did alter the attractiveness of anisole, with fewer male beetles attracted to the binary mixture than to anisole on its own. The behavior of female beetles was not altered by any of the chemicals tested. Anisole is also the sex pheromone of H. consanguinea, making this the first known example of two melolonthine scarabs sharing the same pheromone.
Resumo:
The sex pheromone of the red banded mango caterpillar, Deanolis sublimbalis (Lepidoptera: Crambidae), a serious pest of the mango Mangifera indica (Anacardiaceae) in India and Southeast Asia and a recent invader into northern Australia, has been identified. Three candidate compounds were identified from pheromone gland extracts of female moths, using gas chromatography (GC), GC-electroantennographic detection and GC-mass spectrometric analyses, in conjunction with dimethyldisulfide derivatization. Field bioassays established that both (Z)-11-hexadecenal (Z11-16:Ald) and (3Z,6Z,9Z)-tricosatriene (3Z,6Z,9Z-23:Hy) were required for attraction of male D. sublimbalis moths, and 1,000 μg of a 1:1 mix of Z11-16:Ald and 3Z,6Z,9Z-23:Hy was more attractive to male moths than caged virgin females. However, the binary blend was only attractive when the isomeric purity of the monounsaturated aldehyde was >99%, suggesting that the (E)-isomer was inhibitory. Although (Z)-11-hexadecen-1-ol (Z11-16:OH) was tentatively identified in gland extracts, the addition of this compound to the binary blend did not increase the numbers of moths captured. The pheromone can now be used in integrated pest management strategies.
Resumo:
Sexing wild marine mammals that show little to no sexual dimorphism is challenging. For sirenians that are difficult to catch or approach closely, molecular sexing from tissue biopsies offers an alternative method to visual discrimination. This paper reports the results of a field study to validate the use of two sexing methods: (1) visual discrimination of sex vs (2) molecular sexing based on a multiplex PCR assay which amplifies the male-specific SRY gene and differentiates ZFX and ZFY gametologues. Skin samples from 628 dugongs (Dugong dugon) and 100 Florida manatees (Trichechus manatus latirostris) were analysed and assigned as male or female based on molecular sex. These individuals were also assigned a sex based on either direct observation of the genitalia and/or the association of the individual with a calf. Individuals of both species showed 93 to 96% congruence between visual and molecular sexing. For the remaining 4 to 7%, the discrepancies could be explained by human error. To mitigate this error rate, we recommend using both of these robust techniques, with routine inclusion of sex primers into microsatellite panels employed for identity, along with trained field observers and stringent sample handling.
Resumo:
In tephritid fruit flies of the genus Bactrocera Macquart, a group of plant derived compounds (sensu amplo ‘male lures’) enhance the mating success of males that have consumed them. For flies responding to the male lure methyl eugenol, this is due to the accumulation of chemicals derived from the male lure in the male rectal gland (site of pheromone synthesis) and the subsequent release of an attractive pheromone. Cuelure, raspberry ketone and zingerone are a second, related group of male lures to which many Bactrocera species respond. Raspberry ketone and cuelure are both known to accumulate in the rectal gland of males as raspberry ketone, but it is not known if the emitted male pheromone is subsequently altered in complexity or is more attractive to females. Using Bactrocera tryoni as our test insect, and cuelure and zingerone as our test chemicals, we assess: (i) lure accumulation in the rectal gland; (ii) if the lures are released exclusively in association with the male pheromone; and (iii) if the pheromone of lure-fed males is more attractive to females than the pheromone of lure-unfed males. As previously documented, we found cuelure was stored in its hydroxyl form of raspberry ketone, while zingerone was stored largely in an unaltered state. Small but consistent amounts of raspberry ketone and β-(4-hydroxy-3-methoxyphenyl)-propionic acid were also detected in zingerone-fed flies. Males released the ingested lures or their analogues, along with endogenous pheromone chemicals, only during the dusk courtship period. More females responded to squashed rectal glands extracted from flies fed on cuelure than to glands from control flies, while more females responded to the pheromone of calling cuelure-fed males than to control males. The response to zingerone treatments in both cases was not different from the control. The results show that male B. tryoni release ingested lures as part of their pheromone blend and, at least for cuelure, this attracts more females.
Resumo:
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.