31 resultados para Sequential patterns
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Limitations in quality bedding material have resulted in the growing need to re-use litter during broiler farming in some countries, which can be of concern from a food-safety perspective. The aim of this study was to compare the Campylobacter levels in ceca and litter across three litter treatments under commercial farming conditions. The litter treatments were (a) the use of new litter after each farming cycle; (b) an Australian partial litter re-use practice; and (c) a full litter re-use practice. The study was carried out on two farms over two years (Farm 1, from 2009–2010 and Farm 2, from 2010–2011), across three sheds (35,000 to 40,000 chickens/shed) on each farm, adopting three different litter treatments across six commercial cycles. A random sampling design was adopted to test litter and ceca for Campylobacter and Escherichia coli, prior to commercial first thin-out and final pick-up. Campylobacter levels varied little across litter practices and farming cycles on each farm and were in the range of log 8.0–9.0 CFU/g in ceca and log 4.0–6.0 MPN/g for litter. Similarly the E. coli in ceca were ∼log 7.0 CFU/g. At first thin-out and final pick-up, the statistical analysis for both litter and ceca showed that the three-way interaction (treatments by farms by times) was highly significant (P < 0.01), indicating that the patterns of Campylobacter emergence/presence across time vary between the farms, cycles and pickups. The emergence and levels of both organisms were not influenced by litter treatments across the six farming cycles on both farms. Either C. jejuni or C. coli could be the dominant species across litter and ceca, and this phenomenon could not be attributed to specific litter treatments. Irrespective of the litter treatments in place, cycle 2 on Farm 2 remained campylobacter-free. These outcomes suggest that litter treatments did not directly influence the time of emergence and levels of Campylobacter and E. coli during commercial farming.
Resumo:
The size at recruitment, temporal and spatial distribution, and abiotic factors influencing abundance of three commercially important species of penaeid prawns in the sublittoral trawl grounds of Moreton Bay (Queensland, Australia) were compared. Metapenaeus bennettae and Penaeus plebejus recruit to the trawl grounds at sizes which are relatively small (14-15 mm carapace length, CL) and below that at which prawns are selected for, and retained, in the fleet's cod-ends. In contrast, Penaeus esculenlus recruit at the relatively large size of 27 mm CL from February to May, well above the size ranges selected for. Recruitment of M. bennettae extends over several months, September-October and February March, and was thus likely to be bi-annual, while the recruitment period of P. plebejus was distinct, peaking in October-November each year. Size classes of M . bennettae were the most spatially stratified of the three species. Catch rates of recruits were negatively correlated with depth for all three species, and were also negatively correlated with salinity for M. bennettae.
Resumo:
There is considerable individual variation in the performance of feedlot cattle even when they are of the same genotype and sourced from the same property (Hasker et al., 1996). It is possible that behavioural differences between individuals may account for some of this variation. This paper reports the correlations between some behavioural patterns and average daily gain (ADG) of Brahman steers that were feedlot-fed for 100 days.
Resumo:
Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETRmax), photosynthetic efficiency (?), saturating irradiance (Ek) and effective quantum yield (?F/Fm?) were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETRmax and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETRmax, Ek and ?F/Fm? were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.
Resumo:
In south-eastern Queensland, Australia, sorghum planted in early spring usually escapes sorghum midge, Stenodiplosis sorghicola, attack. Experiments were conducted to better understand the role of winter diapause in the population dynamics of this pest. Emergence patterns of adult midge from diapausing larvae on the soil surface and at various depths were investigated during spring to autumn of 1987/88–1989/90. From 1987/88 to 1989/90, 89%, 65% and 98% of adult emergence, respectively, occurred during November and December. Adult emergence from larvae diapausing on the soil surface was severely reduced due to high mortality attributed to surface soil temperatures in excess of 40°C, with much of this mortality occurring between mid-September and mid-October. Emergence of adults from the soil surface was considerably delayed in the 1988/89 season compared with larvae buried at 5 or 10 cm which had similar emergence patterns for all three seasons. In 1989/90, when a 1-cm-deep treatment was included, there was a 392% increase in adult emergence from this treatment compared with deeper treatments. Some diapausing larvae on the surface did not emerge at the end of summer in only 1 year (1989/90), when 28.0% of the larvae on the surface remained in diapause, whereas only 0.8% of the buried larvae remained in diapause. We conclude that the pattern of emergence explains why spring plantings of sorghum in south-eastern Queensland usually escape sorghum midge attack.
Resumo:
Knowledge of the temporal and spatial characteristics of chokka squid (Loligo vulgaris reynaudii) biology in South African waters is limited, so the possibility of there being a geographically fragmented stock was examined by investigating the distribution of maturity patterns for the species, covering all known spawning areas and using both historical and recent data. Gonadosomatic indices (GSI) varied between year-round consistency and apparent seasonal peaks in both summer and winter; there was no clear spatial pattern. Monthly percentage maturity provided further evidence for two peak reproductive periods each year, although mature squid were present throughout. Sex ratios demonstrated great variability between different areas and life history stages. Male-biased sex ratios were only apparent on the inshore spawning grounds and ranged between 1.118:1 and 4.267:1. Size at sexual maturity was also seasonal, squid maturing smaller in winter/spring than in summer/autumn. Also, squid in the east matured smaller than squid in the west. Although the results from the present study do not provide conclusive evidence of distinct geographic populations, squid likely spawn over a significantly larger area of the Agulhas Bank than previously estimated, and squid on the west coast of South Africa may return to spawn on the western portion of the Agulhas Bank. It remains likely, however, that the east and west coast populations are a single stock and that migration of juveniles to the west coast and their subsequent return as sub-adults is an integral but non-essential and variable part of the life history.
Resumo:
Although migration patterns for various life history stages of the chokka squid (Loligo reynaudii) have been previously presented, there has been limited comparison of spatial variation in biological parameters. Based on data from research surveys; size ranges of juveniles, subadults and adults on the Agulhas Bank were estimated and presented spatially. The bulk of the results appear to largely support the current acceptance of the life cycle with an annual pattern of squid hatching in the east, migrating westwards to offshore feeding grounds on the Central and Western Agulhas Bank and the west coast and subsequent return migration to the eastern inshore areas to spawn. The number of adult animals in deeper water, particularly in autumn in the central study area probably represents squid spawning in deeper waters and over a greater area than is currently targeted by the fishery. The distribution of life history stages and different feeding areas does not rule out the possibility that discrete populations of L. reynaudii with different biological characteristics inhabit the western and eastern regions of the Agulhas Bank. In this hypothesis, some mixing of the populations does occur but generally squid from the western Agulhas Bank may occur in smaller numbers, grow more slowly and mature at a larger size. Spawning occurs on the western portion of the Agulhas Bank, and juveniles grow and mature on the west coast and the central Agulhas Bank. Future research requirements include the elucidation of the age structure of chokka squid both spatially and temporally, and a comparison of the statolith chemistry and genetic characterisation between adults from different spawning areas across the Agulhas Bank.
Resumo:
Trials were conducted in southern Queensland, Australia between March and May 2003, 2004 and 2005 to study patterns of hourly and daily release of the secondary conidia of Claviceps africana and their relationships with weather parameters. Conidia were trapped for at least one hour on most (> 90%) days in 2003 and 2004, but only on 55% of days in 2005. Both the highest daily concentration of conidia, and the highest number of hours per day when conidia were trapped, were recorded 1-3 days after rainfall events. Although the pattern of conidial release was different every day, the highest hourly conidial concentrations occurred between 10.00 hours and 17.00 hours on 73% of all days in the three trials. Hours when conidia were trapped were characterized by higher median values of temperature, windspeed and vapour pressure deficit, lower relative humidity, and leaf wetness values of 0%, than hours when no conidia were recorded. The results indicate that fungicides need to be applied to the highly ergot-susceptible male sterile (A-) lines of sorghum in hybrid seed production blocks and breeders' nurseries as soon as possible after rainfall events to minimize ergot severity.
Resumo:
The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were surveyed and mapped across an area of 31,000 km2. Benthic sediment composition, water depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified representative pattern. Eleven species of seagrass were present at 56 (33.3%) of the sample points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium isoetifolium were the most common species and these were nutrient profiled. Sub-tidal seagrass distribution (and associated seagrass nutrient concentrations) was generally confined to northern-central and south-western regions of the survey area (
Resumo:
Linear mixed models were used to test the null hypothesis that there were no differences between seasons and locations in the reproductive potential of female eastern king prawns, Melicertus plebejus along the east coast of Australia. Three samples were collected in each season between autumn 1991 and winter 1992 (inclusive). Females capable of spawning were found at all locations but proportions were greater in lower than higher latitudes. Females capable of spawning were not found at the southern (highest latitude) most location in all seasons. There was a significant interaction in reproductive potential between seasons and locations suggesting that patterns among seasons differed between locations and vice versa. Reproductive potential was greatest amongst the northern (lower latitudes) most locations and was greatest in autumn at these locations. Seasonal patterns were less pronounced further south (higher latitudes). The length composition of females in catches differed between locations with more larger prawns found in samples from northern locations. The challenge that remains is to quantify the oceanic sources of larvae that contribute to recruitment in each nursery area and the estuarine sources of juveniles that contribute adults back to the effective spawning stock. Maintaining the effective spawning stock and important nursery areas are crucial to the sustainability of this resource.
Resumo:
Feral pigs (Sus scrofa) are believed to have a severe negative impact on the ecological values of tropical rainforests in north Queensland, Australia. Most perceptions of the environmental impacts of feral pigs focus on their disturbance of the soil or surface material (diggings). Spatial and temporal patterns of feral pig diggings were identified in this study: most diggings occurred in the early dry season and predominantly in moist soil (swamp and creek) microhabitats, with only minimal pig diggings found elsewhere through the general forest floor. The overall mean daily pig diggings were 0.09% of the rainforest floor. Most diggings occurred 3-4 months after the month of maximum rainfall. Most pig diggings were recorded in highland swamps, with over 80% of the swamp areas dug by pigs at some time during the 18-month study period. These results suggest that management of feral pig impacts should focus on protecting swamp and creek microhabitats in the rainforest, which are preferred by pigs for digging and which have a high environmental significance.
Resumo:
We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.
Resumo:
Despite biocontrol research spanning over 100 years, the hybrid weed, commonly referred to as Lantana camara, is not under adequate control. Host specificity and varietal preference of released agents, climatic suitability of a region for released agents, number of agents introduced and range or area of infestation appear to play a role in limiting biocontrol success. At least one of 41 species of mainly leaf- or flower-feeding insects has been introduced, or spread, to 41 of the 70 countries or regions where lantana occurs. Over half (26) of these species have established, achieving varying levels of herbivory and presumably some degree of control. Accurate taxonomy of the plant and adaptation of potential agents to the host plant are some of the better predictors of at least establishment success. Retrospective analysis of the hosts of introduced biocontrol agents for L. camara show that a greater proportion of agents that were collected from L. camara or Lantana urticifolia established, than agents that were collected from other species of Lantana. Of the introduced agents that had established and were oligophagous, 18 out of 22 established. The proportion of species establishing, declined with the number of species introduced. However, there was no trend when oceanic islands were treated separately from mainland areas and the result is likely an artefact of how introductions have changed over time. A calculated index of the degree of herbivory due to agents known to have caused some damage per country, was not related to land area infested with lantana for mainlands nor for oceanic islands. However, the degree of herbivory is much higher on islands than mainlands. This difference between island and mainland situations may reflect population dynamics in patchy or metapopulation landscapes. Basic systematic studies of the host remain crucial to successful biocontrol, especially of hybrid weeds like L. camara. Potential biocontrol agents should be monophages collected from the most closely related species to the target weed or be phytophages that attack several species of lantana. Suitable agents should be released in the most ideal ecoclimatic area. Since collection of biocontrol agents has been limited to a fraction of the known number of phytophagous species available, biocontrol may be improved by targeting insects that feed on stems and roots, as well as the agents that feed on leaves and flowers.
Resumo:
The membracid Aconophora compressa Walker, a biological control agent released in 1995 to control Lantana camara (Verbenaceae) in Australia, has since been collected on several nontarget plant species. Our survey suggests that sustained populations of A. compressa are found only on the introduced nontarget ornamental Citharexylum spinosum (Verbenaceae) and the target weed L. camara. It is found on other nontarget plant species only when populations on C. spinosum and L. camara are high, suggesting that the presence of populations on nontarget species may be a spill-over effect. Some of the incidence and abundance on nontarget plants could have been anticipated from host specificity studies done on this agent before release, whereas others could not. This raises important issues about predicting risks posed by weed biological control agents and the need for long-term postintroduction monitoring on nontarget species.
Resumo:
Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments.