6 resultados para Secondary magnetic phasis
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The caseins (αs1, αs2, β, and κ) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1–44) of bovine κ-casein, the protein which maintains the micellar structure of the caseins. κ-Casein (1–44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro8 to Arg34. This is the first report which demonstrates extensive secondary structure within the casein class of proteins.
Resumo:
Trials were conducted in southern Queensland, Australia between March and May 2003, 2004 and 2005 to study patterns of hourly and daily release of the secondary conidia of Claviceps africana and their relationships with weather parameters. Conidia were trapped for at least one hour on most (> 90%) days in 2003 and 2004, but only on 55% of days in 2005. Both the highest daily concentration of conidia, and the highest number of hours per day when conidia were trapped, were recorded 1-3 days after rainfall events. Although the pattern of conidial release was different every day, the highest hourly conidial concentrations occurred between 10.00 hours and 17.00 hours on 73% of all days in the three trials. Hours when conidia were trapped were characterized by higher median values of temperature, windspeed and vapour pressure deficit, lower relative humidity, and leaf wetness values of 0%, than hours when no conidia were recorded. The results indicate that fungicides need to be applied to the highly ergot-susceptible male sterile (A-) lines of sorghum in hybrid seed production blocks and breeders' nurseries as soon as possible after rainfall events to minimize ergot severity.
Resumo:
Elasmobranchs are under increasing pressure from targeted fisheries worldwide, but unregulated bycatch is perhaps their greatest threat. This study tested five elasmobranch bycatch species (Sphyrna lewini, Carcharhinus tilstoni, Carcharhinus amblyrhynchos, Rhizoprionodon acutus, Glyphis glyphis) and one targeted teleost species (Lates calcarifer) to determine whether magnetic fields caused a reaction response and/or change in spatial use of an experimental arena. All elasmobranch species reacted to magnets at distances between 0.26 and 0.58 m at magnetic strengths between 25 and 234 gauss and avoided the area around the magnets. Contrastingly, the teleosts showed no reaction response and congregated around the magnets. The different reactions of the teleosts and elasmobranchs are presumably driven by the presence of ampullae of Lorenzini in the elasmobranchs; different reaction distances between elasmobranch species appeared to correlate with their feeding ecology. Elasmobranchs with a higher reliance on the electroreceptive sense to locate prey reacted to the magnets at the greatest distance, except G. glyphis. Notably, this is the only elasmobranch species tested with a fresh- and saltwater phase in their ecology, which may account for the decreased magnetic sensitivity. The application of magnets worldwide to mitigate the bycatch of elasmobranchs appears promising based on these results.
Resumo:
Secondary crops provide a means of assimilating some effluent nitrogen from eutrophic shrimp farm settlement ponds. However, a more important role may be their stimulation of beneficial bacterial nitrogen removal processes. In this study, bacterial biomass, growth and nitrogen removal capacity were quantified in shrimp farm effluent treatment systems containing vertical artificial substrates and either the banana shrimp Penaeus merguiensis (de Man) or the grey mullet, Mugil cephalus L. Banana shrimp were found to actively graze biofilm on the artificial substrates and significantly reduced bacterial biomass relative to a control (24.5 ± 5.6mgCm−2 and 39.2 ± 8.7mgCm−2, respectively). Bacterial volumetric growth rates, however, were significantly increased in the presence of the shrimp relative to the control 45.2±11.3mgCm−2 per day and 22.0±4.3mgCm−2 per day, respectively). Specific growth rate, or growth rate per cell, of bacteria was therefore appreciably stimulated by the banana shrimp. Nitrate assimilation was found to be significantly higher on grazed substrate biofilm relative to the control (223±54 mgNm−2 per day and 126±36 mg Nm−2 per day, respectively), suggesting that increased bacterial growth rate does relate to enhanced nitrogen uptake. Regulated banana shrimp feeding activity therefore can increase the rate of newbacterial biomass production and also the capacity for bacterial effluent nitrogen assimilation. Mullet had a negligible influence on the biofilm associated with the artificial substrate but reduced sediment bacterial biomass (224 ± 92 mgCm−2) relative to undisturbed sediment (650 ± 254 mgCm−2). Net, or volumetric bacterial growth in the sediment was similar in treatments with and without mullet, suggesting that the growth rate per cell of bacteria in grazed sediments was enhanced. Similar rates of dissolved nitrogen mineralisation werefound in sediments with and without mullet but nitrificationwas reduced. Presence of mullet increased water column suspended solids concentrations, water column bacterial growth and dissolved nutrient uptake. This study has shown that secondary crops, particularly banana shrimp, can play a stimulatory role in the bacterial processing of effluent nitrogen in eutrophic shrimp effluent treatment systems.
Resumo:
Aconophora compressa is a gregarious, sap-sucking insect that uses multiple host plant species. Nymphal host plant species (and variety) significantly affected nymphal survival, nymphal development rate and the subsequent size and fecundity of adults, with fiddlewood ( Citharexylum spinosum ) being significantly best in all respects. Nymphs that developed on a relatively poor host ( Duranta erecta var “geisha girl”) and which were moved to fiddlewood as adults laid significantly fewer eggs (mean ± SE = 836 ± 130) than those that developed solely on fiddlewood (1,329 ± 105). Adults on geisha girl, regardless of having been reared as nymphs on fiddlewood or geisha girl, laid significantly fewer eggs (342 ± 83 and 317 ± 74, respectively) than adults on fiddlewood. A simple model that incorporates host plant related survival, development rate and fecundity suggests that the population dynamics of A. compressa are governed mainly by fiddlewood, the primary host. The results have general implications for understanding the population dynamics of herbivores that use multiple host plant species, and also for the way in which weed biological control host testing methods should be conducted.
Resumo:
We examine the structure and phylogeography of the pig-eye shark (Carcharhinus amboinensis) common in shallow coastal environments in northern Australia using two types of genetic markers, two mitochondrial (control region and NADH hydrogenase 4) and two nuclear (microsatellite and Rag 1) DNA. Two populations were defined within northern Australia on the basis of mitochondrial DNA evidence, but this result was not supported by nuclear microsatellite or Rag 1 markers. One possibility for this structure might be sex-specific behaviours such as female philopatry, although we argue it is doubtful that sufficient time has elapsed for any potential signatures from this behaviour to be expressed in nuclear markers. It is more likely that the observed pattern represents ancient populations repeatedly isolated and connected during episodic sea level changes during the Pleistocene epoch, until current day with restricted contemporary gene flow maintaining population genetic structure. Our results show the need for an understanding of both the history and ecology of a species in order to interpret patterns in genetic structure.