7 resultados para Seasonality and trends
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Traps baited with synthetic aggregation pheromones of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus davidsoni Dobson and fermenting bread dough were used to identify the fauna and monitor the seasonal abundance of Carpophilus spp. in insecticide treated peach and nectarine orchards in the Gosford area of coastal New South Wales. In four orchards 67 178 beetles were trapped during 1994–1995, with C. davidsoni (82%) and Carpophilus gaveni (Dobson) (12.2%) dominating catches. Five species (C. hemipterus, C. mutilatus, Carpophilus marginellus Motschulsky, Carpophilus humeralis (F.) and an unidentified species) each accounted for 0.2–3.2% of trapped beetles. Carpophilus davidsoni was most abundant during late September–early October but numbers declined rapidly during October, usually before insecticides were applied. Spring populations of Carpophilus spp. were very large in 1994–1995 (1843–2588 per trap per week). However, despite a preharvest population decline of approximately 95% and 2–11 applications of insecticide, 14–545 beetles per trap per week (above the arbitrary fruit damage threshold of 10 beetles per trap per week) were recorded during the harvest period and fruit damage occurred at three of the four orchards. Lower preharvest populations in 1995–1996 (< 600 per trap per week) and up to six applications of insecticide resulted in < 10 beetles per trap per week during most of the harvest period and minimal or no fruit damage. The implications of these results for the integrated management of Carpophilus spp. in coastal and inland areas of southeastern Australia are discussed.
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program (QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program (StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).
Resumo:
We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.
Resumo:
Rarely is it possible to obtain absolute numbers in free-ranging populations and although various direct and indirect methods are used to estimate abundance, few are validated against populations of known size. In this paper, we apply grounding, calibration and verification methods, used to validate mathematical models, to methods of estimating relative abundance. To illustrate how this might be done, we consider and evaluate the widely applied passive tracking index (PTI) methodology. Using published data, we examine the rationality of PTI methodology, how conceptually animal activity and abundance are related and how alternative methods are subject to similar biases or produce similar abundance estimates and trends. We then attune the method against populations representing a range of densities likely to be encountered in the field. Finally, we compare PTI trends against a prediction that adjacent populations of the same species will have similar abundance values and trends in activity. We show that while PTI abundance estimates are subject to environmental and behavioural stochasticity peculiar to each species, the PTI method and associated variance estimate showed high probability of detection, high precision of abundance values and, generally, low variability between surveys, and suggest that the PTI method applied using this procedure and for these species provides a sensitive and credible index of abundance. This same or similar validation approach can and should be applied to alternative relative abundance methods in order to demonstrate their credibility and justify their use.
Resumo:
This paper presents a maximum likelihood method for estimating growth parameters for an aquatic species that incorporates growth covariates, and takes into consideration multiple tag-recapture data. Individual variability in asymptotic length, age-at-tagging, and measurement error are also considered in the model structure. Using distribution theory, the log-likelihood function is derived under a generalised framework for the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation, covariate effects can be included for both models with seasonality and tagging effects investigated. Method robustness is established via comparison with the Fabens, improved Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood method performing the best. The method is illustrated further with an application to blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that persisted for several months was detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A high proportion of the Australian and New Zealand dairy industry is based on a relatively simple, low input and low cost pasture feedbase. These factors enable this type of production system to remain internationally competitive. However, a key limitation of pasture-based dairy systems is periodic imbalances between herd intake requirements and pasture DM production, caused by strong seasonality and high inter-annual variation in feed supply. This disparity can be moderated to a certain degree through the strategic management of the herd through altering calving dates and stocking rates, and the feedbase by conserving excess forage and irrigating to flatten seasonal forage availability. Australasian dairy systems are experiencing emerging market and environmental challenges, which includes increased competition for land and water resources, decreasing terms of trade, a changing and variable climate, an increasing environmental focus that requires improved nutrient and water-use efficiency and lower greenhouse gas emissions. The integration of complementary forages has long been viewed as a means to manipulate the home-grown feed supply, to improve the nutritive value and DM intake of the diet, and to increase the efficiency of inputs utilised. Only recently has integrating complementary forages at the whole-farm system level received the significant attention and investment required to examine their potential benefit. Recent whole-of-farm research undertaken in both Australia and New Zealand has highlighted the importance of understanding the challenges of the current feedbase and the level of complementarity between forage types required to improve profit, manage risk and/or alleviate/mitigate against adverse outcomes. This paper reviews the most recent systems-level research into complementary forages, discusses approaches to modelling their integration at the whole-farm level and highlights the potential of complementary forages to address the major challenges currently facing pasture-based dairy systems.