8 resultados para Screening method
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Fowl cholera, caused by P. multocida, is a serious disease of poultry with sudden surges in mortality and an emerging disease of the free ranged poultry industries. This project will develop a more rapid and cost effective screening method for P. multocida. The impacts of this new method are manifold: It will lead to an improved understanding of the epidemiology of fowl cholera and the possible sources of entry onto the farm leading to improved biosecurity measures and control programs. Another impact is improved serotyping, which will ensure more effective and targeted vaccination programs. Improving prevention and control programs and decreasing the reliance on antibiotics will enhance the sustainability and profitability of the industry.
Resumo:
Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Stripe or yellow rust (YR) is a significant problem in wheat crops worldwide. The deployment of adult-plant resistance (APR) genes in wheat cultivars is considered a sustainable management strategy, as these genes confer partial resistance that is usually non-race specific. Screening for APR typically involves assessment of adult plants in the field, where expression may be influenced by environmental factors. We report a high-throughput screening method for YR APR that can be used to assess fixed lines or segregating populations grown under controlled environmental conditions (CEC). Inoculation of 3-week-old wheat plants from lines with known APR responses to YR, when grown under constant light and temperature, provided disease responses typical of adult plants. Two F-2 populations ('H45' x 'ST93' and 'Wyalkatchem' x 'ST93') segregating for APR were assessed under both CEC and field conditions. These populations showed similar variation in disease response and lines assessed in both environments attained similar rankings. Phenotypic screening using CEC and continuous light provides an opportunity to accelerate the development of new wheat cultivars with durable resistance.
Resumo:
Significant genotypic differences in tolerance of pollen germination and seed set to high temperatures have been shown in sorghum. However, it is unclear whether differences were associated with variation in either the threshold temperature above which reproductive processes are affected, or in the tolerance to increased temperature above that threshold. The objectives of this study were to (a) dissect known differences in heat tolerance for a range of sorghum genotypes into differences in the threshold temperature and tolerance to increased temperatures, (b) determine whether poor seed set under high temperatures can be compensated by increased seed mass, and (c) identify whether genotypic differences in heat tolerance in a controlled environment facility (CEF) can be reproduced in field conditions. Twenty genotypes were grown in a CEF under four day/night temperatures (31.9/21.0 °C, 32.8/21.0 °C, 36.1/21.0 °C, and 38.0/21.0 °C), and a subset of six genotypes was grown in the field under four different temperature regimes around anthesis. The novelty of the findings in this study related to differences in responsiveness to high temperature—genotypic differences in seed set percentage were found for both the threshold temperature and the tolerance to increased maximum temperature above that threshold. Further, the response of seed set to high temperature in the field study was well correlated to that in the CEF (R2 = 0.69), although the slope was significantly less than unity, indicating that heat stress effects may have been diluted under the variable field conditions. Poor seed set was not compensated by increased seed mass in either CEF or field environments. Grain yield was thus closely related to seed set percentage. This result demonstrates the potential for development of a low-cost field screening method to identify high-temperature tolerant varieties that could deliver sustainable yields under future warmer climates.
Resumo:
Representational Difference Analysis (RDA) is an established technique used for isolation of specific genetic differences between or within bacterial species. This method was used to investigate the genetic basis of serovar-specificity and the relationship between serovar and virulence in Haemophilus parasuis. An RDA clone library of 96 isolates was constructed using H. parasuis strains H425(P) (serovar 12) and HS1967 (serovar 4). To screen such a large clone library to determine which clones are strain-specific would typically involved separately labelling each clone for use in Southern hybridisation against genomic DNA from each of the strains. In this study, a novel application of reverse Southern hybridisation was used to screen the RDA library: genomic DNA from each strain was labelled and used to probe the library to identify strain-specific clones. This novel approach represents a significant improvement in methodology that is rapid and efficient.
Resumo:
The project will provide enough data for a reliable and robust NIRs. It will more fully develop the in vitro method to enable less costly assessment of grains in the future. It will also provide a reliable assessment for DE which is the most expensive component of pig feed.
Resumo:
Certain bacteria present on frog skin can prevent infection by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), conferring disease resistance. Previous studies have used agar-based in vitro challenge assays to screen bacteria for Bd-inhibitory activity and to identify candidates for bacterial supplementation trials. However, agar-based assays can be difficult to set up and to replicate reliably. To overcome these difficulties, we developed a semi-quantitative spectrophotometric challenge assay technique. Cell-free supernatants were prepared from filtered bacterial cultures and added to 96-well plates in replicated wells containing Bd zoospores suspended in tryptone-gelatin hydrolysate-lactose (TGhL) broth medium. Plates were then read daily on a spectrophotometer until positive controls reached maximum growth in order to determine growth curves for Bd. We tested the technique by screening skin bacteria from the Australian green-eyed tree frog Litoria serrata. Of bacteria tested, 31% showed some degree of Bd inhibition, while some may have promoted Bd growth, a previously unknown effect. Our cell-free supernatant challenge assay technique is an effective in vitro method for screening bacterial isolates for strong Bd-inhibitory activity. It contributes to the expanding field of bioaugmentation research, which could play a significant role in mitigating the effects of chytridiomycosis on amphibians around the world.
Resumo:
Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such ofalse-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.