2 resultados para Scanner Images
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Australian researchers have been developing robust yield estimation models, based mainly on the crop growth response to water availability during the crop season. However, knowledge of spatial distribution of yields within and across the production regions can be improved by the use of remote sensing techniques. Images of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, available since 1999, have the potential to contribute to crop yield estimation. The objective of this study was to analyse the relationship between winter crop yields and the spectral information available in MODIS vegetation index images at the shire level. The study was carried out in the Jondaryan and Pittsworth shires, Queensland , Australia . Five years (2000 to 2004) of 250m resolution, 16-day composite of MODIS Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images were used during the winter crop season (April to November). Seasonal variability of the profiles of the vegetation index images for each crop season using different regions of interest (cropping mask) were displayed and analysed. Correlation analysis between wheat and barley yield data and MODIS image values were also conducted. The results showed high seasonal variability in the NDVI and EVI profiles, and the EVI values were consistently lower than those of the NDVI. The highest image values were observed in 2003 (in contrast to 2004), and were associated with rainfall amount and distribution. The seasonal variability of the profiles was similar in both shires, with minimum values in June and maximum values at the end of August. NDVI and EVI images showed sensitivity to seasonal variability of the vegetation and exhibited good association (e.g. r = 0.84, r = 0.77) with winter crop yields.
Resumo:
Internal browning disorders, including brown fleck (BF), in potato (Solanum tuberosum) tubers greatly reduce tuber quality, but the causes are not well understood. This is due, in part, to the highly variable data provided by visual value-based rating systems. A digital imaging technique was developed to quantify accurately the incidence of internal browning in potato tubers. Images of tuber sections were scanned using a flatbed scanner and digitally enhanced to highlight tuber BF lesions, and the area of affected tissue calculated using pixel quantification software. Digital imaging allowed for the determination of previously unused indices of the incidence and severity of internal browning in potato tubers. Statistical analysis of the comparison between digitally derived and visual-rating BF data from a glasshouse experiment showed that digital data greatly improved the delineation of treatment effects. The F-test probability was further improved through square root or logarithmic data transformations of the digital data, but not of the visual-rating data. Data from a field experiment showed that the area of tuber affected by BF and the number of small BF lesions increased with time and with increase in tuber size. The results from this study indicate that digital imaging of internal browning disorders of potato tubers holds much promise in determining their causes that heretofore have proved elusive.