2 resultados para Saltwater encrouchment
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Elasmobranchs are under increasing pressure from targeted fisheries worldwide, but unregulated bycatch is perhaps their greatest threat. This study tested five elasmobranch bycatch species (Sphyrna lewini, Carcharhinus tilstoni, Carcharhinus amblyrhynchos, Rhizoprionodon acutus, Glyphis glyphis) and one targeted teleost species (Lates calcarifer) to determine whether magnetic fields caused a reaction response and/or change in spatial use of an experimental arena. All elasmobranch species reacted to magnets at distances between 0.26 and 0.58 m at magnetic strengths between 25 and 234 gauss and avoided the area around the magnets. Contrastingly, the teleosts showed no reaction response and congregated around the magnets. The different reactions of the teleosts and elasmobranchs are presumably driven by the presence of ampullae of Lorenzini in the elasmobranchs; different reaction distances between elasmobranch species appeared to correlate with their feeding ecology. Elasmobranchs with a higher reliance on the electroreceptive sense to locate prey reacted to the magnets at the greatest distance, except G. glyphis. Notably, this is the only elasmobranch species tested with a fresh- and saltwater phase in their ecology, which may account for the decreased magnetic sensitivity. The application of magnets worldwide to mitigate the bycatch of elasmobranchs appears promising based on these results.
Resumo:
Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking log of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value = 1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region. (C) 2012 Elsevier B.V. All rights reserved.