15 resultados para STRUCTURAL BIOLOGY
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Composts can provide a source of organic carbon and nutrients for soil biota and increase soil fertility as well as provide other biological and structural benefits hence compost addition to cotton soils is seen as a way to improve cotton soil biological health and fertility. In a six month incubation experiment we analysed the changes in microbial populations and activities related to C and N cycling following the application of feedlot, poultry manure and gin trash compost materials. A significant variation in the chemical composition, e.g. major nutrients and trace elements, was found between the three compost products. The feedlot compost generally contained higher levels of dissolved organic carbon, total nitrogen and bicarbonate extractable phosphorus whereas the Gin trash compost had lower carbon and nutrient concentrations. The effect of compost addition @ 5 and 10t/ha generally increased microbial activity but the effect was only evident during the first two weeks of incubation. Composts effects on the abundance of total bacteria (16S), nitrifying (amoA), nitrogen fixing (nifH) and denitrifying bacteria (nosZ) and total fungi (ITS gene) varied between different composts. The addition of feedlot and poultry compost material significantly increased the levels of dissolved organic carbon (DOC) and nitrogen (DON) in soil compared to that in control soils while ‘Gin trash’ compost had no effect. These differences reflected in the microbial catabolic diversity changes in the compost amended soils. Therefore, chemical analysis of the compost material before application is recommended to more fully consider its’ potential benefits.
Resumo:
In the coastal region of central Queensland female red-spot king prawns, P. longistylus, and the western or blue-leg king prawns, P. latisulcatus, had high mean ovary weights and high proportions of advanced ovary development during the winter months of July and August of 1985 and 1986. On the basis of insemination, both species began copulating at the size of 26-27 mm CL, but P. longistylus matured and spawned at a smaller size than P. latisulcatus. Abundance of P. longistylus was generally three to four times greater than that of P. latisulcatus but the latter was subject to greater variation in abundance. Low mean ovary weight and low proportions of females with advanced ovaries were associated with the maximum mean bottom sea-water temperature (28.5ºC) for both species. Population fecundity indices indicated that peaks in yolk or egg production (a) displayed a similar pattern for both species, (b) varied in timing from year to year for both species and (c) were strongly influenced by abundance. Generally, sample estimates of abundance and commercial catch rates (CPUE) showed similar trends. Differences between the two may have been due to changes in targeted commercial effort in this multi-species fishery.
Resumo:
Metapenaeus endeavouri and M. ensis from coastal trawl fishing grounds off central Queensland, Australia, have marked seasonal reproductive cycles. Female M. endeavouri grew to a larger size than female M. ensis and occurred over a wider range of sites and depths. Although M. ensis was geographically restricted in distribution to only the shallowest sites it was highly abundant. Mating activity in these open thelycum species, indicated by the presence or absence of a spermatophore, was relatively low and highly seasonal compared with closed thelyeum shrimps. Seasonal variation in spermatophore insemination can be used as an independent technique to study spawning periodicity in open thelycum shrimps. Data strongly suggest an inshore movement of M. endeavouri to mature and spawn. This differs from most concepts of Penaeus species life cycles, but is consistent with the estuarine significance in the life cycle of Metapenaeus species. Monthly population fecundity indices suggest summer spawning for both species, which contrasts with the winter spawning of other shrimps from the same multispecies fishery.
Resumo:
This paper describes the fishery and reproductive biology for Linuparus trigonus obtained from trawl fishermen operating off Queensland’s east coast, Australia. The smallest mature female lobster measured 59.8 mm CL, however, 50% maturity was reached between 80 and 85 mm CL. Brood fecundity (BF) was size dependent and ranged between 19,287 and 100,671 eggs in 32 females from 59.8 to 104.3 mm CL. The relationship was best described by the power equation BF = 0.1107*CL to the power of 2.9241 (r to the power of 2 = 0:74). Egg size ranged from 0.96 to 1.12 mm in diameter (mean = 1:02 (+or-) 0:01 mm). Egg weight and size were independent of lobster size. Length frequencies displayed multi-modal distributions.The percentage of female to male lobsters was relatively stable for small size classes (30 to 70 mm CL; 50.0 to 63.6% females), but female proportions rose markedly between 75 and 90 mm (72.2 to 85.4%) suggesting that at the onset of sexual maturity female growth rates are reduced. In size classes greater than 95 mm, males were numerically dominant. A description of the L. trigonus fishery in Queensland is also detailed.
Resumo:
The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).
Resumo:
The reproductive biology of the red throat emperor, Lethrinus miniatus (Schneider, 1801) was examined in the southern Great Barrier Reef (GBR), Australia. The species was found to display the characteristics of an incomplete metagynous hermaphrodite based on histological evidence and size frequency information. Over 95% of functional males possessed a remnant lumen, but there was no evidence of oocytes in the testes of males. A single transitional fish was sampled which had both ovarian and testicular tissue present in its gonad. Size frequency data showed that females dominated the smaller size classes with the majority of fish < 40 cm being females. Lethrinus miniatus had an extended spawning season from July-November, although spawning was more pronounced during the spring. Spawning was initiated earlier at lower latitudes. There was no particular size or age when sex change occurred since females older than 20 and males as young as 2-yrs old were sampled.
Resumo:
The Rhabdoviridae, whose members collectively infect invertebrates, animals, and plants, form a large family that has important consequences for human health, agriculture, and wildlife ecology. Plant rhabdoviruses can be separated into the genera Cytorhabdovirus and Nucleorhabdovirus, based on their sites of replication and morphogenesis. This review presents a general overviewof classical and contemporary findings about rhabdovirus ecology, pathology, vector relations, and taxonomy. The genome organization and structure of several recently sequenced nucleorhabdoviruses and cytorhabdoviruses is integrated with new cell biology findings to provide a model for the replication of the two genera. A prospectus outlines the exciting opportunities for future research that will contribute to a more detailed understanding of the biology, biochemistry, replication and host interactions of the plant rhabdoviruses.
Resumo:
The accurate assessment of trends in the woody structure of savannas has important implications for greenhouse accounting and land-use industries such as pastoralism. Two recent assessments of live woody biomass change from north-east Australian eucalypt woodland between the 1980s and 1990s present divergent results. The first estimate is derived from a network of permanent monitoring plots and the second from woody cover assessments from aerial photography. The differences between the studies are reviewed and include sample density, spatial scale and design. Further analyses targeting potential biases in the indirect aerial photography technique are conducted including a comparison of basal area estimates derived from 28 permanent monitoring sites with basal area estimates derived by the aerial photography technique. It is concluded that the effect of photo-scale; or the failure to include appropriate back-transformation of biomass estimates in the aerial photography study are not likely to have contributed significantly to the discrepancy. However, temporal changes in the structure of woodlands, for example, woodlands maturing from many smaller trees to fewer larger trees or seasonal changes, which affect the relationship between cover and basal area could impact on the detection of trends using the aerial photography technique. It is also possible that issues concerning photo-quality may bias assessments through time, and that the limited sample of the permanent monitoring network may inadequately represent change at regional scales
Resumo:
Twelve years ago our understanding of ratoon stunting disease (RSD) was confined almost exclusively to diagnosis of the disease and control via farm hygiene, with little understanding of the biology of the interaction between the causal agent (Leifsonia xyli subsp. xyli) and the host plant sugarcane (Saccharum spp. hybrids). Since then, research has focused on developing the molecular tools to dissect L. xyli subsp. xyli, so that better control strategies can be developed to prevent losses from RSD. Within this review, we give a brief overview of the progression in research on L. xyli subsp. xyli and highlight future challenges. After a brief historical background on RSD, we discuss the development of molecular tools such as transformation and transposon mutagenesis and discuss the apparent lack of genetic diversity within the L. xyli subsp. xyli world population. We go on to discuss the sequencing of the genome of L. xyli subsp. xyli, describe the key findings and suggest some future research based on known deficiencies that will capitalise on this tremendous knowledge base to which we now have access.
Resumo:
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1-4 h) exposures of thermal stress (35-45 [deg]C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm'. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm' represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 [deg]C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm' qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 [deg]C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40-45 [deg]C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Nino event.
Resumo:
Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETRmax), photosynthetic efficiency (?), saturating irradiance (Ek) and effective quantum yield (?F/Fm?) were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETRmax and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETRmax, Ek and ?F/Fm? were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.
Resumo:
Background: Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton. Results: We have used a custom cDNA microarray chip, developed for the blue swimmer crab Portunus pelagicus, to generate expression profiles of genes involved in exoskeletal formation across the moult cycle. A total of 21 distinct moult-cycle related differentially expressed transcripts representing crustacean cuticular proteins were isolated. Of these, 13 contained copies of the cuticle_1 domain previously isolated from calcified regions of the crustacean exoskeleton, four transcripts contained a chitin_bind_4 domain (RR consensus sequence) associated with both the calcified and un-calcified cuticle of crustaceans, and four transcripts contained an unannotated domain (PfamB_109992) previously isolated from C. pagurus. Additionally, cryptocyanin, a hemolymph protein involved in cuticle synthesis and structural integrity, also displays differential expression related to the moult cycle. Moult stage-specific expression analysis of these transcripts revealed that differential gene expression occurs both among transcripts containing the same domain and among transcripts containing different domains. Conclusion: The large variety of genes associated with cuticle formation, and their differential expression across the crustacean moult cycle, point to the complexity of the processes associated with cuticle formation and hardening. This study provides a molecular entry path into the investigation of the gene networks associated with cuticle formation.
Resumo:
Although migration patterns for various life history stages of the chokka squid (Loligo reynaudii) have been previously presented, there has been limited comparison of spatial variation in biological parameters. Based on data from research surveys; size ranges of juveniles, subadults and adults on the Agulhas Bank were estimated and presented spatially. The bulk of the results appear to largely support the current acceptance of the life cycle with an annual pattern of squid hatching in the east, migrating westwards to offshore feeding grounds on the Central and Western Agulhas Bank and the west coast and subsequent return migration to the eastern inshore areas to spawn. The number of adult animals in deeper water, particularly in autumn in the central study area probably represents squid spawning in deeper waters and over a greater area than is currently targeted by the fishery. The distribution of life history stages and different feeding areas does not rule out the possibility that discrete populations of L. reynaudii with different biological characteristics inhabit the western and eastern regions of the Agulhas Bank. In this hypothesis, some mixing of the populations does occur but generally squid from the western Agulhas Bank may occur in smaller numbers, grow more slowly and mature at a larger size. Spawning occurs on the western portion of the Agulhas Bank, and juveniles grow and mature on the west coast and the central Agulhas Bank. Future research requirements include the elucidation of the age structure of chokka squid both spatially and temporally, and a comparison of the statolith chemistry and genetic characterisation between adults from different spawning areas across the Agulhas Bank.
Resumo:
The sciaenid Protonibea diacanthus is a large, long-lived predatory fish of inshore northern Australian waters, which forms annual aggregations that are fished extensively by traditional (subsistence) and recreational fishers. There are now widespread concerns that the resource is being overexploited. Indigenous fishers of the Cape York Northern Peninsula Area (NPA) relate that large adult fish (up to 1500 mm total length (TL)) made up the bulk of the catch from the sciaenid aggregations until about 1994. In contrast, sexually mature P. diacanthus comprised only a small component (12 fish out of 270=4.4%) examined in a 1999–2000 sampling programme that was biased towards the largest individuals available. At 790 mm TL, the minimum size at first maturity for female P. diacanthus in this study is much smaller than the 920 mm TL reported previously in Queensland waters. Developing ovaries were observed in specimens sampled from sciaenid aggregations which formed in NPA waters between May and September 2000. However, no fish with ripe or spent gonads were found in the study, so the current timing and location of the spawning season for P. diacanthus in the region remain unknown. Food items observed in the analysis of the diet of P. diacanthus from the NPA included a variety of teleosts and invertebrates. The range of animal taxa represented in the prey items support the description of an ‘opportunistic predator’ attributed to the species. In our sampling, the stomach contents of fish caught during the time of the aggregation events did not differ from those observed at other times of the year. A total of 114 P. diacanthus were tagged and released at aggregation sites during the study period, and 3 fish (2.6%) were subsequently recaptured. The low rate of tag returns from the wild stock tagging programme, both in this study (2.6%) and from recreational fisher tag/release programmes for the sciaenid elsewhere in Queensland (6.5%), were not explained by tag loss nor mortality, given the high retention rate of tags and the zero mortality seen in tank trials. In response to the biological findings from this study, indigenous community councils of the NPA imposed a 2-year fishing moratorium for P. diacanthus. Surveys at aggregation sites in 2002 and 2003 established that much larger fish (mean size 103.5 cm TL) were again present on the grounds, albeit in very low numbers. These recent preliminary results highlight the critical need for continued monitoring and management of the P. diacanthus fishery in the NPA, if prospects for resource recovery are to be realised. The NPA initiative has provided a rare opportunity to negotiate a co-management strategy, based on scientific data and traditional knowledge, for the recovery of a cultural and economically significant fished resource.
Resumo:
Lutjanus argentimaculatus is an Indo-Pacific species that inhabits riverine, coastal and offshore reef habitats. An investigation of the reproductive biology of Lutjanus argentimaculatus in northeastern Queensland waters (Australia) was undertaken between 1999 and 2002. Individuals in inshore estuarine and freshwater riverine habitats were mostly immature whereas those captured in offshore reef waters were predominantly mature. Males matured at a smaller size than females, with the length-at-50%-maturity (Lm50) for males estimated to be 470.7 mm fork length (FL) and 531.4 mm FL for females. The spawning season in northeastern Queensland was mostly during the austral spring-summer and peaked in December. The presence of ripe female fish and occurrence of postovulatory follicles in histological sections provided evidence that spawning activity was more pronounced during the full and third quarter moon phases. Lutjanus argentimaculatus were highly fecund with estimates of up to 4 x 106 ova per spawning event. Immature fish concentrated in inshore areas where they were targeted by recreational fishers whereas, in offshore areas, commercial fishers caught predominantly larger, mature fish.