30 resultados para STOCK PROBLEM
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Common coral trout Plectropomus leopardus is an iconic fish of the Great Barrier Reef (GBR) and is the most important fish for the commercial fishery there. Most of the catch is exported live to Asia. This stock assessment was undertaken in response to falls in catch sizes and catch rates in recent years, in order to gauge the status of the stock. It is the first stock assessment ever conducted of coral trout on the GBR, and brings together a multitude of different data sources for the first time. The GBR is very large and was divided into a regional structure based on the Bioregions defined by expert committees appointed by the Great Barrier Reef Marine Park Authority (GBRMPA) as part of the 2004 rezoning of the GBR. The regional structure consists of six Regions, from the Far Northern Region in the north to the Swains and Capricorn–Bunker Regions in the south. Regions also closely follow the boundaries between Bioregions. Two of the northern Regions are split into Subregions on the basis of potential changes in fishing intensity between the Subregions; there are nine Subregions altogether, which include four Regions that are not split. Bioregions are split into Subbioregions along the Subregion boundaries. Finally, each Subbioregion is split into a “blue” population which is open to fishing and a “green” population which is closed to fishing. The fishery is unusual in that catch rates as an indicator of abundance of coral trout are heavily influenced by tropical cyclones. After a major cyclone, catch rates fall for two to three years, and rebound after that. This effect is well correlated with the times of occurrence of cyclones, and usually occurs in the same month that the cyclone strikes. However, statistical analyses correlating catch rates with cyclone wind energy did not provide significantly different catch rate trends. Alternative indicators of cyclone strength may explain more of the catch rate decline, and future work should investigate this. Another feature of catch rates is the phenomenon of social learning in coral trout populations, whereby when a population of coral trout is fished, individuals quickly learn not to take bait. Then the catch rate falls sharply even when the population size is still high. The social learning may take place by fish directly observing their fellows being hooked, or perhaps heeding a chemo-sensory cue emitted by fish that are hooked. As part of the assessment, analysis of data from replenishment closures of Boult Reef in the Capricorn–Bunker Region (closed 1983–86) and Bramble Reef in the Townsville Subregion (closed 1992–95) estimated a strong social learning effect. A major data source for the stock assessment was the large collection of underwater visual survey (UVS) data collected by divers who counted the coral trout that they sighted. This allowed estimation of the density of coral trout in the different Bioregions (expressed as a number of fish per hectare). Combined with mapping data of all the 3000 or so reefs making up the GBR, the UVS results provided direct estimates of the population size in each Subbioregion. A regional population dynamic model was developed to account for the intricacies of coral trout population dynamics and catch rates. Because the statistical analysis of catch rates did not attribute much of the decline to tropical cyclones, (and thereby implied “real” declines in biomass), and because in contrast the UVS data indicate relatively stable population sizes, model outputs were unduly influenced by the unlikely hypothesis that falling catch rates are real. The alternative hypothesis that UVS data are closer to the mark and declining catch rates are an artefact of spurious (e.g., cyclone impact) effects is much more probable. Judging by the population size estimates provided by the UVS data, there is no biological problem with the status of coral trout stocks. The estimate of the total number of Plectropomus leopardus on blue zones on the GBR in the mid-1980s (the time of the major UVS series) was 5.34 million legal-sized fish, or about 8400 t exploitable biomass, with an 2 additional 3350 t in green zones (using the current zoning which was introduced on 1 July 2004). For the offshore regions favoured by commercial fishers, the figure was about 4.90 million legal-sized fish in blue zones, or about 7700 t exploitable biomass. There is, however, an economic problem, as indicated by relatively low catch rates and anecdotal information provided by commercial fishers. The costs of fishing the GBR by hook and line (the only method compatible with the GBR’s high conservation status) are high, and commercial fishers are unable to operate profitably when catch rates are depressed (e.g., from a tropical cyclone). The economic problem is compounded by the effect of social learning in coral trout, whereby catch rates fall rapidly if fishers keep returning to the same fishing locations. In response, commercial fishers tend to spread out over the GBR, including the Far Northern and Swains Regions which are far from port and incur higher travel costs. The economic problem provides some logic to a reduction in the TACC. Such a reduction during good times, such as when the fishery is rebounding after a major tropical cyclone, could provide a net benefit to the fishery, as it would provide a margin of stock safety and make the fishery more economically robust by providing higher catch rates during subsequent periods of depressed catches. During hard times when catch rates are low (e.g., shortly after a major tropical cyclone), a change to the TACC would have little effect as even a reduced TACC would not come close to being filled. Quota adjustments based on catch rates should take account of long-term trends in order to mitigate variability and cyclone effects in data.
Resumo:
Spawning stock dynamics of 2 commercially important penaeid prawns, Metapenaeus bennettae and Penaeus esculentus, from 9 stations in Moreton Bay (27°15'S, 153°15'E), southeast Queensland, Australia, were examined. An egg production index (EPI), based on the relative abundance, proportion that were mature or ripe, and size of adult females, was used as a measure of egg production in the 2 populations. Egg production by M. bennettae was 20 to 30 higher than that by P. esculentus, extended over 7 to 8 mo each year and peaked from February to March (late summer to early autumn). Monthly patterns in egg production by M. bennettae varied between years. In contrast, P. esculentus produced most of its eggs in a single, clearly defined peak in October (spring), although production continued to March (early autumn) each year. The seasonal onset and subsequent decline in maturation in P. esculentus were rapid. Egg production by M. bennettae was several times higher at the 5 northern stations than at the 4 southern stations and negatively correlated with salinity during the main spawning period. Egg production by P. esculentus was less varied among stations and positively correlated with depth. P. esculentus appeared more likely than M. bennettae to experience recruitment overfishing because (1) the peak spawning period for P. esculentus was dependent on relatively few adult females spawning over a short period, and (2) the selectivity of trawl nets used in the bay was much higher for P. esculentus spawners than for those of M. bennettae. Compared with more northern populations, P. esculentus in Moreton Bay matured at a larger size, had lower incidences of insemination and mature or ripe females, and had a shorter spawning period. These results suggest the likelihood of recruitment overfishing in P. esculentus increases with increasing latitude.
Resumo:
Sleepy cod Oxyeleotris lineolatus is a species of freshwater goby in demand in Australian markets by consumers of Asian origin. It is related to marble goby Oxyeleotris marmoratus, the most expensive freshwater food fish in Asia, which is cultured throughout southeast Asia in ponds and cages. The performance of sleepy cod in culture conditions was investigated to assess the viability of farming them in northern Australia. Sleepy cod fingerlings (62.8 +/- 0.8 mm total length and 2.56 +/- 0.095 g) were stocked into experimental ponds at 32,857 fish/ha, and grown out for 8 mo. Shelter was provided in each of three replicate ponds and was absent in three control ponds. The provision of shelter in juvenile growout was found to be of no benefit, although fish in ponds provided with shelter weighed slightly more per unit length than fish in ponds without shelter. Cannibalism was not a problem in growout, and survival was close to 100%. After the shelter trial was completed, fish were graded into large and small classes (three replicates of each), and grown out without shelter at the same density for 158 d. Following that, fish were again graded, and the largest 30% retained from growout at a density of 8,857 fish/ha (large, 198 +/-6.44 g) or 10,000 fish/ha (small, 48.9 +/-1.27 g). These were grown out for 188 d. Growth of selected stock at low densities was slower than earlier growth rates, although smaller fish gained weight more rapidly than larger fish. Growth rates were better than the only published data for marble goby. Further investigation into high density culture and different genotypes of sleepy cod needs to be undertaken to determine the viability of pond culture.
Resumo:
Data on catch sizes, catch rates, length-frequency and age composition from the Australian east coast tailor fishery are analysed by three different population dynamic models: a surplus production model, an age-structured model, and a model in which the population is structured by both age and length. The population is found to be very heavily exploited, with its ability to reproduce dependent on the fishery’s incomplete selectivity of one-year-old fish. Estimates of recent harvest rates (proportion of fish available to the fishery that are actually caught in a single year) are over 80%. It is estimated that only 30–50% of one-year-old fish are available to the fishery. Results from the age-length-structured model indicate that both exploitable biomass (total mass of fish selected by the fishery) and egg production have fallen to about half the levels that prevailed in the 1970s, and about 40% of virgin levels. Two-year-old fish appear to have become smaller over the history of the fishery. This is assumed to be due to increased fishing pressure combined with non-selectivity of small one-year-old fish, whereby the one-year-old fish that survive fishing are small and grow into small two-year-old fish the following year. An alternative hypothesis is that the stock has undergone a genetic change towards smaller fish; the true explanation is unknown. The instantaneous natural mortality rate of tailor is hypothesised to be higher than previously thought, with values between 0.8 and 1.3 yr–1 consistent with the models. These values apply only to tailor up to about three years of age, and it is possible that a lower value applies to fish older than three. The analysis finds no evidence that fishing pressure has yet affected recruitment. If a recruitment downturn were to occur, however, under current management and fishing pressure there is a strong chance that the fishery would need a complete closure for several years to recover, and even then recovery would be uncertain. Therefore it is highly desirable to better protect the spawning stock. The major recommendations are • An increase in the minimum size limit from 30cm to 40cm in order to allow most one-year-old fish to spawn, and • An experiment on discard mortality to gauge the proportion of fish between 30cm and 40cm that are likely to survive being caught and released by recreational line fishers (the dominant component of the fishery, currently harvesting roughly 1000t p.a. versus about 200t p.a. from the commercial fishery).
Resumo:
Allozyme electrophoresis was used to investigate the genetic stock structure of snapper, Pagrus auratus (Bloch and Schneider) on the east coast of Australia. Spatial variation in allele frequency was examined at nine polymorphic loci. The results support a single, relatively weak genetic disjunction among the P. auratus populations north of Sydney (latitude 33°52?) but south of Forster (latitude 31°58?) on the central coast of New South Wales. There was also evidence for genetic isolation by distance on the east coast. The influence of the East Australian Current (EAC) in transporting larvae to the south, coupled with the general northward migration pattern of adult snapper is believed to be responsible for maintaining a panmictic snapper population on much of the east coast of Australia.
Resumo:
Intensive nursery systems are designed to culture mud crab postlarvae through a critical phase in preparation for stocking into growout systems. This study investigated the influence of stocking density and provision of artificial habitat on the yield of a cage culture system. For each of three batches of postlarvae, survival, growth and claw loss were assessed after each of three nursery phases ending at crab instars C1/C2, C4/C5 and C7/C8. Survival through the first phase was highly variable among batches with a maximum survival of 80% from megalops to a mean crab instar of 1.5. Stocking density between 625 and 2300 m-2 did not influence survival or growth in this first phase. Stocking densities tested in phases 2 and 3 were 62.5, 125 and 250 m -2. At the end of phases 2 and 3, there were five instar stages present, representing a more than 20-fold size disparity within the populations. Survival became increasingly density-sensitive following the first phase, with higher densities resulting in significantly lower survival (phase 2: 63% vs. 79%; phase 3: 57% vs. 64%). The addition of artificial habitat in the form of pleated netting significantly improved survival at all densities. The mean instar attained by the end of phase 2 was significantly larger at a lower stocking density and without artificial habitat. No significant effect of density or habitat on harvest size was detected in phase 3. The highest incidence of claw loss was 36% but was reduced by lowering stocking densities and addition of habitat. For intensive commercial production, yield can be significantly increased by addition of a simple net structure but rapidly decreases the longer crablets remain in the nursery.
Resumo:
The scombrid Scomberomorus semifasciatus is an important component of inshore fisheries in tropical Australia. Data on the parasite fauna of 593 fish from areas off northern and eastern Australia were examined for evidence of discrete fish populations. The parasites used were juveniles of Pterobothrium pearsoni, Callitetrarhynchus gracilis, Anisakis simplex (sensu latu) and Terranova sp. Tukey Kramer pairwise comparisons gave significant differences in the abundances of two or more parasites between fish from the east coast, the eastern Gulf of Carpentaria and the remainder of northern Australia. Multivariate analysis gave further evidence of differences and the results suggest that at least 4 populations or stocks of grey mackerel occur along the northern and eastern coastline of Australia.
Resumo:
Premature or abnormal softening of persimmon fruit within 3-7 days after harvest is a major physiological problem of non-astringent persimmon cultivars grown in subtropical regions of Australia. Up to 30% of consignments may soften rapidly frequently overnight, often resulting in the flesh becoming very soft, completely translucent, and impossible to handle. Incidence of premature soft fruit can vary with season and production location. To study the incidence of this problem, we conducted surveys of fruit harvested from five environmentally-diverse regions of Australia over a two-year period. We found wide variation in the rate of both premature softening and normal softening with differences of up 37 days between orchards in percentage of fruit reaching 50% soft. We found that the rate of fruit softening was exacerbated by lower calcium concentrations at fruit set, shorter fruit development periods and heavier rainfall during the fruit development period. The implications of our findings, in terms of orchard management, export and domestic marketing strategies are discussed.
Resumo:
The stable isotopes of delta O-18 and delta C-13 in sagittal otolith carbonates were used to determine the stock structure of Grey Mackerel, Scomberomorus semifasciatus. Otoliths were collected from Grey Mackerel at ten locations representing much of their distributional and fisheries range across northern Australia from 2005 to 2007. Across this broad range (similar to 6500 km), fish from four broad locations-Western Australia (S1), Northern Territory and Gulf of Carpentaria (S2, S3, S4, S5, S6, S7), Queensland east coast mid and north sites (S8, S9) and Queensland east coast south site (S10)-had stable isotope values that were significantly different indicating stock separation. Otolith stable isotopes differed more between locations than among years within a location, indicating temporal stability across years. The spatial separation of these populations indicates a complex stock structure across northern Australia. Stocks of S. semifasciatus appear to be associated with large coastal embayments. These results indicate that optimal fisheries management may require a review of the current spatial arrangements, particularly in relation to the evidence of shared stocks in the Gulf of Carpentaria. Furthermore, as the population of S. semifasciatus in Western Australia exhibited high spatial separation from those at all the other locations examined, further research activities should focus on investigating additional locations within Western Australia for an enhanced determination of stock delineation. From the issue entitled "Proceedings of the 4th International Otolith Symposium, 24-28 August 2009, Monterey, California"
Resumo:
A highly polymorphic genetic locus of Stout Whiting was examined for evidence of geographical subdivision amongst samples collected from three locales in southern Queensland waters. Statistical indicators of subdivision were not significantly different from zero, suggesting that it is unlikely that the Stout Whiting resource in southern Queensland is genetically subdivided into separate stocks. It is recommended that the full-scale genetic program not proceed and that the resource be managed as a single stock.
Resumo:
The project has provided management and other stakeholders with information necessary to make informed decisions about the management of four of the key exploited shark species caught in the Queensland inshore net fishery and northern New South Wales line fishery. The project has determined that spatial management of milk sharks within Queensland, and scalloped hammerhead, common black tip and Australian black tip sharks within Queensland and New South Wales is appropriate. The project has determined that both black tip shark species are likely to require co-operative management arrangements between Queensland and New South Wales. For scalloped hammerheads separate stocks between the two jurisdictions were identified from the fisheriesdependent samples, however genetic exchange across borders is likely to be facilitated by movement of adult females and perhaps larger males to a lesser extent. This information will greatly assist compliance with the Commonwealth Environment Protection and Biodiversity Conservation Act (1999) for shark fisheries in north-eastern Australia by providing the necessary basis for robust assessment of the status of stocks of the study species, thereby helping to deliver their sustainable harvest. It also helps to achieve objectives of the Australian National Shark Plan. The project provides the appropriate spatial framework for future monitoring and assessment of the study species. This is at a time when shark fisheries are receiving close attention from all sectors and when monitoring programs are being implemented, aimed at better assessment of stock status. This project has provided the crucial information for developing an appropriate monitoring design as well as the necessary basis for making statements about stock status. The project has addressed research priorities identified by the Queensland Fisheries Research Advisory Board, Great Barrier Reef Marine Park Authority and Queensland Fisheries. Previously management has assumed a single stock for each species on the east coast of Queensland, and management of shark fisheries in New South Wales (NSW) and Queensland has been independent of one another. The project has been able to enhance and develop links between research, management and industry. Strong positive relationships with commercial fishers were crucial in the collection of samples throughout the study area and fisheries managers were part of the project team throughout the study period. During the project the study area was extended to include both Queensland and NSW waters, creating mutualistic and positive links between the States’ research and management agencies. Extension of project results included management representatives from NSW and Queensland, as well as the Northern Territory where similar shark fisheries operate and similar species are targeted. The project was able to provide significant human capital development opportunities providing considerable value to the project outcomes. Use of vertebral microchemistry and life history characteristics as stock determination methods provided material for two PhD students based at James Cook University: Ron Schroeder, vertebral chemistry; and Alastair Harry, life history characteristic. The project has developed novel research methods that have great capacity for future application, including: • Development of a simple and rapid genetic diagnostic tool (RT-HRM-PCR assay) for differentiating among the black tip shark species, for which no simple morphological identifier exists; and • Development of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) methods for analysing and interpreting microchemical composition of shark vertebrae. The study has provided further confirmation of the effectiveness of using a holistic approach in stock structure studies and justifies investment into such studies.
Resumo:
Queensland is the only state with Jungle perch. Development and restoration of their fisheries will attract interstate anglers, creating economic benefits. Jungle perch have been successfully spawned on numerous occasions by DEEDI, but larval survival beyond day 6 has been a problem. The larval rearing problem must be overcome to progress restoration and development of the Jungle perch fishery. Key areas requiring investigation are brood stock nutrition, feeding cues and optimal larval feeds. Following successful production of fingerlings, an evaluation of the reintroduction of fingerlings at selected sites is required to determine and the guide success of the stocking program.
Resumo:
Many fisheries worldwide have adopted vessel monitoring systems (VMS) for compliance purposes. An added benefit of these systems is that they collect a large amount of data on vessel locations at very fine spatial and temporal scales. This data can provide a wealth of information for stock assessment, research, and management. However, since most VMS implementations record vessel location at set time intervals with no regard to vessel activity, some methodology is required to determine which data records correspond to fishing activity. This paper describes a probabilistic approach, based on hidden Markov models (HMMs), to determine vessel activity. A HMM provides a natural framework for the problem and, by definition, models the intrinsic temporal correlation of the data. The paper describes the general approach that was developed and presents an example of this approach applied to the Queensland trawl fishery off the coast of eastern Australia. Finally, a simulation experiment is presented that compares the misallocation rates of the HMM approach with other approaches.
Resumo:
Rapid genetic gains for growth in barramundi ( Lates calcarifer) appear achievable by starting a breeding programme using foundation stock from progeny tested broodstock. The potential gains of this novel breeding design were investigated using biologically feasible scenarios tested with computer simulation models. The design involves the production of a large number of full-sib families using artificial mating which are compared in common growout conditions. The estimated breeding values of their paternal parents are calculated using a binomial probit analysis to assess their suitability as foundation broodstock. The programme can theoretically yield faster rates of genetic gain compared to other breeding programmes for aquaculture species. Assuming a heritability of 0.25 for growth, foundation broodstock evaluated in two years had breeding values for faster growth ranging from 21% to 51% depending on the genetic diversity of stock under evaluation. As a comparison it will take between nine and twenty-two years to identify broodstock with similar breeding values in a contemporary barramundi breeding programme.
Resumo:
This project has contributed to the ecologically sustainable management of mangrove jack in Australia by providing comprehensive information on its biology, habitat requirements, population parameters and stock structure. Specifically, the project has resulted in an enhanced understanding of the life history of Australian mangrove jack, the levels of exploitation in its local fishery and the likely existence of a single genetic stock throughout Queensland.