3 resultados para SPRING-GIS
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Two examples of GIS-based multiple-criteria evaluations of plantation forests are presented. These desktop assessments use available topographical, geological and pedological information to establish the risk of occurrence of certain environmentally detrimental processes. The first case study is concerned with the risk that chemical additives (i.e. simazine) applied within the forestry landscape may reach the drainage system. The second case study assesses the vulnerability of forested areas to landslides. The subject of the first multiple-criteria evaluation (MCE) was a 4 km2 logging area, which had been recently site-prepared for a Pinus plantation. The criteria considered relevant to the assessment were proximity to creeks, slope, soil depth to the restrictive layer (i.e. potential depth to a perched water table) and soil erodability (based on clay content). The output of the MCE was in accordance with field observations, showing that this approach has the potential to provide management support by highlighting areas vulnerable to waterlogging, which in turn can trigger overland flow and export of pollutants to the local stream network. The subject of the second evaluation was an Araucaria plantation which is prone to landslips during heavy rain. The parameters included in the assessment were drainage system, the slope of the terrain and geological features such as rocks and structures. A good correlation between the MCE results and field observations was found, suggesting that this GIS approach is useful for the assessment of natural hazards. Multiple-criteria evaluations are highly flexible as they can be designed in either vector or raster format, depending on the type of available data. Although tested on specific areas, the MCEs presented here can be easily used elsewhere and assist both management intervention and the protection of the adjacent environment by assessing the vulnerability of the forest landscape to either introduced chemicals or natural hazards.
Resumo:
Improved cultivar.
Resumo:
Assessing the impacts of climate variability on agricultural productivity at regional, national or global scale is essential for defining adaptation and mitigation strategies. We explore in this study the potential changes in spring wheat yields at Swift Current and Melfort, Canada, for different sowing windows under projected climate scenarios (i.e., the representative concentration pathways, RCP4.5 and RCP8.5). First, the APSIM model was calibrated and evaluated at the study sites using data from long term experimental field plots. Then, the impacts of change in sowing dates on final yield were assessed over the 2030-2099 period with a 1990-2009 baseline period of observed yield data, assuming that other crop management practices remained unchanged. Results showed that the performance of APSIM was quite satisfactory with an index of agreement of 0.80, R2 of 0.54, and mean absolute error (MAE) and root mean square error (RMSE) of 529 kg/ha and 1023 kg/ha, respectively (MAE = 476 kg/ha and RMSE = 684 kg/ha in calibration phase). Under the projected climate conditions, a general trend in yield loss was observed regardless of the sowing window, with a range from -24 to -94 depending on the site and the RCP, and noticeable losses during the 2060s and beyond (increasing CO2 effects being excluded). Smallest yield losses obtained through earlier possible sowing date (i.e., mid-April) under the projected future climate suggested that this option might be explored for mitigating possible adverse impacts of climate variability. Our findings could therefore serve as a basis for using APSIM as a decision support tool for adaptation/mitigation options under potential climate variability within Western Canada.