12 resultados para SINGLE-ATOM
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
Lipopolysaccharide (LPS) is a critical virulence determinant in Pasteurella multocida and a major antigen responsible for host protective immunity. In other mucosal pathogens, variation in LPS or lipooligosaccharide structure typically occurs in the outer core oligosaccharide regions due to phase variation. P. multocida elaborates a conserved oligosaccharide extension attached to two different, simultaneously expressed inner core structures, one containing a single phosphorylated 3-deoxy-D-manno-octulosonic acid (Kdo) residue and the other containing two Kdo residues. We demonstrate that two heptosyltransferases, HptA and HptB, add the first heptose molecule to the Kdo1 residue and that each exclusively recognizes different acceptor molecules. HptA is specific for the glycoform containing a single, phosphorylated Kdo residue (glycoform A), while HptB is specific for the glycoform containing two Kdo residues (glycoform B). In addition, KdkA was identified as a Kdo kinase, required for phosphorylation of the first Kdo molecule. Importantly, virulence data obtained from infected chickens showed that while wild-type P. multocida expresses both LPS glycoforms in vivo, bacterial mutants that produced only glycoform B were fully virulent, demonstrating for the first time that expression of a single LPS form is sufficient for P. multocida survival in vivo. We conclude that the ability of P. multocida to elaborate alternative inner core LPS structures is due to the simultaneous expression of two different heptosyltransferases that add the first heptose residue to the nascent LPS molecule and to the expression of both a bifunctional Kdo transferase and a Kdo kinase, which results in the initial assembly of two inner core structures.
Resumo:
Genetic control of vegetative propagation traits was described for a second-generation, outbred, intersectional hybrid family (N = 208) derived from two species, Corymbia torelliana (F. Muell.) K.D. Hill & L.A.S. Johnson and Corymbia variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, which contrast for propagation characteristics and in their capacity to develop lignotubers. Large phenotypic variances were evident for rooting and most other propagation traits, with significant proportions attributable to differences between clones (broad-sense heritabilities 0.2-0.5). Bare root assessment of rooting rate and root quality parameters tended to have the highest heritabilities, whereas rooting percentage based on root emergence from pots and shoot production were intermediate. Root biomass and root initiation had the lowest heritabilities. Strong favourable genetic correlations were found between rooting percentage and root quality traits such as root biomass, volume, and length. Lignotuber development on a seedling was associated with low rooting and a tendency to poor root quality in cuttings and was in accord with the persistence of species parent types due to gametic phase disequilibrium. On average, nodal cuttings rooted more frequently and with higher quality root systems, but significant cutting type x genotype interaction indicated that for some clones, higher rooting rates were obtained from tips. Low germination, survival of seedlings, and rooting rates suggested strong hybrid breakdown in this family.
Resumo:
The principal objective of this study was to determine if Campylobacter jejuni genotyping methods based upon resolution optimised sets of single nucleotide polymorphisms (SNPs) and binary genetic markers were capable of identifying epidemiologically linked clusters of chicken-derived isolates. Eighty-eight C. jejuni isolates of known flaA RFLP type were included in the study. They encompassed three groups of ten isolates that were obtained at the same time and place and possessed the same flaA type. These were regarded as being epidemiologically linked. Twenty-six unlinked C. jejuni flaA type I isolates were included to test the ability of SNP and binary typing to resolve isolates that were not resolved by flaA RFLP. The remaining isolates were of different flaA types. All isolates were typed by real-time PCR interrogation of the resolution optimised sets of SNPs and binary markers. According to each typing method, the three epidemiologically linked clusters were three different clones that were well resolved from the other isolates. The 26 unlinked C. jejuni flaA type I isolates were resolved into 14 SNP-binary types, indicating that flaA typing can be unreliable for revealing epidemiological linkage. Comparison of the data with data from a fully typed set of isolates associated with human infection revealed that abundant lineages in the chicken isolates that were also found in the human isolates belonged to clonal complex (CC) -21 and CC-353, with the usually rare C-353 member ST-524 being especially abundant in the chicken collection. The chicken isolates selected to be diverse according to flaA were also diverse according to SNP and binary typing. It was observed that CC-48 was absent in the chicken isolates, despite being very common in Australian human infection isolates, indicating that this may be a major cause of human disease that is not chicken associated.
Resumo:
Using an established genetic map, a single gene conditioning covered smut resistance, Ruh.7H, was mapped to the telomere region of chromosome 7HS in an Alexis/Sloop doubled haploid barley population. The closest marker to Ruh.7H, abg704 was 7.5 cM away. Thirteen loci on the distal end of 7HS with potential to contain single nucleotide polymorphisms (SNPs) were identified by applying a comparative genomics approach using rice sequence data. Of these, one locus produced polymorphic co-dominant bands of different size while two further loci contained SNPs that were identified using the recently developed high resolution melting (HRM) technique. Two of these markers flanked Ruh.7H with the proximal marker located 3.8 cM and the distal marker 2.7 cM away. This is the first report on the application of the HRM technique to SNP detection and to rapid scoring of known cleaved amplified polymorphic sequence (CAPS) markers in plants. This simple, precise post-PCR technique should find widespread use in the fine-mapping of genetic regions of interest in complex cereal and other plant genomes.
Resumo:
Development and evaluation of a single kernel NIR assessment method for improving baley malting quality QTL identification.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
Wood is an important biological resource which contributes to nutrient and hydrology cycles through ecosystems, and provides structural support at the plant level. Thousands of genes are involved in wood development, yet their effects on phenotype are not well understood. We have exploited the low genomic linkage disequilibrium (LD) and abundant phenotypic variation of forest trees to explore allelic diversity underlying wood traits in an association study. Candidate gene allelic diversity was modelled against quantitative variation to identify SNPs influencing wood properties, growth and disease resistance across three populations of Corymbia citriodora subsp. variegata, a forest tree of eastern Australia. Nine single nucleotide polymorphism (SNP) associations from six genes were identified in a discovery population (833 individuals). Associations were subsequently tested in two smaller populations (130160 individuals), validating our findings in three cases for actin 7 (ACT7) and COP1 interacting protein 7 (CIP7). The results imply a functional role for these genes in mediating wood chemical composition and growth, respectively. A flip in the effect of ACT7 on pulp yield between populations suggests gene by environment interactions are at play. Existing evidence of gene function lends strength to the observed associations, and in the case of CIP7 supports a role in cortical photosynthesis.
Resumo:
Japanese isolates of Candidatus Liberibacter asiaticus have been shown to be clearly differentiated by simple sequence repeat (SSR) profiles at four loci. In this study, 25 SSR loci, including these four loci, were selected from the whole-genome sequence and were used to differentiate non-Japanese samples of Ca. Liberibacter asiaticus (13 Indian, 3 East Timorese, 1 Papuan and 8 Floridian samples). Out of the 25 SSR loci, 13 were polymorphic. Dendrogram analysis using SSR loci showed that the clusters were mostly consistent with the geographical origins of the isolates. When single nucleotide polymorphisms (SNPs) were searched around these 25 loci, only the upstream region of locus 091 exhibited polymorphism. Phylogenetic tree analysis of the SNPs in the upstream region of locus 091 showed that Floridian samples were clustered into one group as shown by dendrogram analysis using SSR loci. The differences in nucleotide sequences were not associated with differences in the citrus hosts (lime, mandarin, lemon and sour orange) from which the isolates were originally derived.
Resumo:
To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.
Resumo:
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm 615 cm, 25 cm 617 cm, 25 cm 619 cm, 25 cm 621 cm, and 25 cm 623 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm615 cm to 25 cm623 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm617 cm to 25 cm623 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm 617 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm617 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice