4 resultados para SHELL UTILIZATION
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The effect of moisture content and storage temperature on the high quality storage life on macadamia nut-in-shell (NIS), and the subsequent influence of NIS storage on the shelf-life of roasted kernel, is being investigated. Macadamia integrifolia 'Keauhou" (HAES 246) NIS is being stored at 5°, 25°C and 40°C with a moisture content of 15.0, 12.5, 10.0, 7.5 and 3.5% for a maximum of 12 months. Preliminary results showed that unacceptable levels of visual mould developed on NIS with 15.0 and 12.5% moisture at 25°C following relatively short periods of storage. Discolouration and the production of an off-flavour in the raw kernel resulted after 1 month's storage of NIS with a moisture content of 10.0% at 40°C. Roasting times were reduced with increased storage duration of NIS with a moisture content of 15.0, 12.5 and 10.0% at 25°C, 15.0 and 12.5% at 5°C and 3.5% at 40°C. The percentage of roasted kernel rejects increased with increased storage duration of NIS with a moisture content of 15.0 and 12.5% at 25°C.
Resumo:
As a response to the HAL banana call, this project will look to further utilization of bananas not suitable for the retail market.
Resumo:
BACKGROUND Kernel brown centres in macadamia are a defect causing internal discolouration of kernels. This study investigates the effect on the incidence of brown centres in raw kernel after maintaining high moisture content in macadamia nuts-in-shell stored at temperatures of 30°C, 35°C, 40°C and 45°C. RESULTS Brown centres of raw kernel increased with nuts-in-shell storage time and temperature when high moisture content was maintained by sealing in polyethylene bags. Almost all kernels developed the defect when kept at high moisture content for 5 days at 45°C, and 44% developed brown centres after only 2 days of storage at high moisture content at 45°C. This contrasted with only 0.76% when stored for 2 days at 45°C but allowed to dry in open-mesh bags. At storage temperatures below 45°C, there were fewer brown centres, but there were still significant differences between those stored at high moisture content and those allowed to dry (P < 0.05). CONCLUSION Maintenance of high moisture content during macadamia nuts-in-shell storage increases the incidence of brown centres in raw kernels and the defect increases with time and temperature. On-farm nuts-in-shell drying and storage practices should rapidly remove moisture to reduce losses. Ideally, nuts-in-shell should not be stored at high moisture content on-farm at temperatures over 30°C. © 2013 Society of Chemical Industry
Resumo:
The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.