3 resultados para Rolling mill rolls - Centrifugal casting

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane filtration technology has been proven to be a technically sound process to improve the quality of clarified cane juice and subsequently to increase the productivity of crystallisation and the quality of sugar production. However, commercial applications have been hindered because the benefits to crystallisation and sugar quality have not outweighed the increased processing costs associated with membrane applications. An 'Integrated Sugar Production Process (ISPP) Concept Model' is proposed to recover more value from the non-sucrose streams generated by membrane processing. Pilot scale membrane fractionation trials confirmed the technical feasibility of separating high-molecular weight, antioxidant and reducing sugar fractions from cane juice in forms suitable for value recovery. It was also found that up to 40% of potassium salts from the juice can be removed by membrane application while removing the similar amount of water with potential energy saving in subsequent evaporation. Application of ISPP would allow sugar industry to co-produce multiple products and high quality mill sugar while eliminating energy intensive refining processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a more efficient in vitro regeneration system for somatic embryos (SEs) of avocado (Persea americana) would facilitate the development of new superior cultivars for this valuable horticultural crop. In this study, we report a new and efficient method for maintenance and regeneration of avocado SEs. Avocado SEs of four cultivars remained healthy and viable in vitro for 11 months on a medium used for mango somatic embryogenesis, compared with 3-4 months on Murashige and Skoog medium. Various supplements and media modifications were investigated to improve the low conversion rate of regenerated plants from avocado SEs reported previously. The one-step system for regeneration of white-opaque somatic embryos (WOSEs) used solid medium only over a period of 12-14 weeks (sub-culturing every 6 weeks). Addition of praline and glutamine improved the total regeneration from 0 to 17.5% and 10.5%, and plant/shoot recovery from 0 to 12.5% and 5%, respectively. A two-step culture system involving the transfer of WOSEs of cultivar 'Reed' after 6 weeks on solid to liquid medium for 12-15 days as an intermediate step, followed by subculturing again onto solid medium for 6 weeks improved total regeneration to 29% and plant/shoot recovery to 18.3 from 0% when regenerated by subculturing on solid medium only. Supplementation with proline in the solid as well as liquid medium in the two-step culture system at 0.4 g/L increased total regeneration to 35% and plant/shoot recovery to 20%. We were able to achieve highest regeneration using glutamine at 1 g/L in the two-step culture system in terms of both total regeneration (58.3%, including 43.3% bipolar regeneration) and plant/shoot recovery (36.7%) rates, which were significantly higher than in any other treatment investigated. (C) 2013 Elsevier B.V. All rights reserved.