4 resultados para Road Maintenance.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.
Resumo:
The strategic objectives of Turf Australia (formerly the Turf Producers Association (TPA)) relating to water use in turf are to: • Source and collate information to support the case for adequate access to water for the Turf production and maintenance sectors and • Compile information generated into a convincing communication package that can be readily used by the industry in its advocacy programs (to government, regulators, media etc) More specifically, the turfgrass industry needs unbiased scientific evidence of the value of healthy grass in our environment. It needs to promote the use of adequate water even during drought periods to maintain quality turfgrass, which provides many benefits to the broader community including cooling the environment, saving energy and encouraging healthy lifestyles. The many environmental, social and health benefits of living turfgrass have been the subject of numerous investigations beyond the scope of this review. However further research is needed to fully understand the economic returns achievable by the judicious use of water for the maintenance of healthy turfgrass. Consumer education, backed by scientific evidence will highlight the “false economy” in allowing turfgrass to wither and die during conditions which require high level water restrictions. This report presents a review of the literature pertaining to research in the field of turf water use. The purpose of the review was to better understand the scope and nature of existing research results on turf water relations so that knowledge gaps could be identified in achieving the above strategic objectives of the TPA. Research to date has been found to be insufficient to compile a convincing communication package as described. However, identified knowledge gaps can now be addressed through targeted research. Information derived from targeted research will provide valuable material for education of the end user of turfgrass. Recommendations have been developed, based on the results of this desktop review. It was determined that future research in the field of turf irrigation needs to focus on a number of key factors which directly or indirectly affect the relationship between turfgrass and water use. These factors are: • Climate • Cultivar • Quality • Site use requirements • Establishment and management The overarching recommendation is to develop a strategic plan for turfgrass water relations research based around the five determinants of turf water use listed above. This plan should ensure research under these five categories is integrated into a holistic approach by which the consumer can be guided in species and/or cultivar choices as well as best management practices with respect to turfgrass water relations. Worsening drought cycles and limited supply of water for irrigation were the key factors driving every research project reviewed in this report. Subsidence of the most recent (or current) drought conditions in Australia should not be viewed by the turf industry as a reason to withdraw support or funding for research in this area. Drought conditions, limited domestic water availability and urban water restrictions will return in Australia albeit in 5, 10 or 20 years time and the turf industry has an opportunity to prepare for that time.
Resumo:
DEEDI have built and maintained a living library of turf grass selections of 138 different turf cultivars. Material is also preserved in tubs in a protected growing environment. The maintenance and ongoing upgrading of these plots requires significant resources to maintain their integrity. As the plots have been in place since 2000, they are currently in need of significant repair. This project will assist in the improvement and maintenance of the turf library for the benefit of the turf industry producers and Australian turf research more generally.