44 resultados para Riverine inputs
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The freshwater sawfish (Pristis microdon) is a critically endangered elasmobranch. Ontogenetic changes in the habitat use of juvenile P. microdon were studied using acoustic tracking in the Fitzroy River, Western Australia. Habitat partitioning was significant between 0+ (2007 year class) and larger 1+ (2006 year class) P. microdon. Smaller 0+ fish generally occupied shallower water (<0.6 m) compared with 1+ individuals, which mainly occurred in depths >0.6 m. Significant differences in hourly depth use were also revealed. The depth that 1+ P. microdon occupied was significantly influenced by lunar phase with these animals utilising a shallower and narrower depth range during the full moon compared with the new moon. This was not observed in 0+ individuals. Habitat partitioning was likely to be related to predator avoidance, foraging behaviours, and temperature and/or light regimes. The occurrence of 1+ P. microdon in deeper water may also result from a need for greater depths in which to manoeuvre. The present study demonstrates the utility of acoustic telemetry in monitoring P. microdon in a riverine environment. These results demonstrate the need to consider the habitat requirements of different P. microdon cohorts in the strategic planning of natural resources and will aid in the development of management strategies for this species.
Resumo:
A field experiment was established in which an amendment of poultry manure and sawdust (200 t/ha) was incorporated into some plots but not others and then a permanent pasture or a sequence of biomass-producing crops was grown with and without tillage, with all biomass being returned to the soil. After 4 years, soil C levels were highest in amended plots, particularly those that had been cropped using minimum tillage, and lowest in non-amended and fallowed plots, regardless of how they had been tilled. When ginger was planted, symphylans caused severe damage to all treatments, indicating that cropping, tillage and organic matter management practices commonly used to improve soil health are not necessarily effective for all crops or soils. During the rotational phase of the experiment, the development of suppressiveness to three key pathogens of ginger was monitored using bioassays. Results for root-knot nematode (Meloidogyne javanica) indicated that for the first 2 years, amended soil was more suppressive than non-amended soil from the same cropping and tillage treatment, whereas under pasture, the amendment only enhanced suppressiveness in the first year. Suppressiveness was generally associated with higher C levels and enhanced biological activity (as measured by the rate of fluorescein diacetate (FDA) hydrolysis and numbers of free-living nematodes). Reduced tillage also enhanced suppressiveness, as gall ratings and egg counts in the second and third years were usually significantly lower in cropped soils under minimum rather than conventional tillage. Additionally, soil that was not disturbed during the process of setting up bioassays was more suppressive than soil which had been gently mixed by hand. Results of bioassays with Fusarium oxysporum f. sp. zingiberi were too inconsistent to draw firm conclusions, but the severity of fusarium yellows was generally higher in fumigated fallow soil than in other treatments, with soil management practices having little impact on disease severity. With regard to Pythium myriotylum, biological factors capable of reducing rhizome rot were present, but were not effective enough to suppress the disease under environmental conditions that were ideal for disease development.
Resumo:
Understanding the life-history attributes of aquatic species is integral to the development of environmental-flow strategies in regulated river systems. This is particularly important when species are under continual and increasing pressure from water-resource development. In this study, the water temperature and flow requirements for spawning of the Fitzroy River golden perch (Macquaria ambigua oriens) were investigated over 4 years at 22 sites in the Fitzroy River catchment. Eggs, larvae and young-of-year (YOY) M. ambigua oriens were sampled on a variety of flow events to determine the environmental requirements for spawning. Eggs and larvae of M. ambigua oriens were detected during natural flow events generally with a minimum of 1.5 m river rise and duration of 7 days. Spawning was associated with the peak and/or recession of the first or second post-winter flow event where water temperatures exceeded 248 degrees C. Our data suggests that it is important to protect a range of flows, not just flood flows, as previously documented for this species. The interaction of spawning flows with existing and future water-resource development should be considered to ensure maintenance of the population viability of M. ambigua oriens.
Resumo:
This study used faecal pellets to investigate the broadscale distribution and diet of koalas in the mulgalands biogeographic region of south-west Queensland. Koala distribution was determined by conducting faecal pellet searches within a 30-cm radius of the base of eucalypts on 149 belt transects, located using a multi-scaled stratified sampling design. Cuticular analysis of pellets collected ffom 22 of these sites was conducted to identify the dietary composition of koalas within the region. Our data suggest that koala distribution is concentrated in the northern and more easterly regions of the study area, and appears to be strongly linked with annual rainfall. Over 50% of our koala records were obtained from non-riverine communities, indicating that koalas in the study area are not primarily restricted to riverine communities, as bas frequently been suggested. Cuticular analysis indicates that more than 90% of koala diet within the region consists of five eucalypt species. Our data highlights the importance of residual Tertiary landforms to koala conservation in the region.
Resumo:
Urban encroachment on dense, coastal koala populations has ensured that their management has received increasing government and public attention. The recently developed National Koala Conservation Strategy calls for maintenance of viable populations in the wild. Yet the success of this, and other, conservation initiatives is hampered by lack of reliable and generally accepted national and regional population estimates. In this paper we address this problem in a potentially large, but poorly studied, regional population in the State that is likely to have the largest wild populations. We draw on findings from previous reports in this series and apply the faecal standing-crop method (FSCM) to derive a regional estimate of more than 59 000 individuals. Validation trials in riverine communities showed that estimates of animal density obtained from the FSCM and direct observation were in close agreement. Bootstrapping and Monte Carlo simulations were used to obtain variance estimates for our population estimates in different vegetation associations across the region. The most favoured habitat was riverine vegetation, which covered only 0.9% of the region but supported 45% of the koalas. We also estimated that between 1969 and 1995 -30% of the native vegetation associations that are considered as potential koala habitat were cleared, leading to a decline of perhaps 10% in koala numbers. Management of this large regional population has significant implications for the national conservation of the species: the continued viability of this population is critically dependent on the retention and management of riverine and residual vegetation communities, and future vegetation-management guidelines should be cognisant of the potential impacts of clearing even small areas of critical habitat. We also highlight eight management implications.
Resumo:
The demonstrated wide adaptability, substantial yield potential and proven timber quality of African mahogany (Khaya senegalensis) from plantings of the late 1960s and early 1970s in northern Australia have led to a resurgence of interest in this high-value species. New plantations or trials have been established in several regions since the early 1990s -in four regions in north Queensland, two in the Northern Territory and one in Western Australia. Overall, more than 1500 ha had been planted by early 2007, and the national annual planting from 2007-2008 as currently planned will exceed 2400 ha. Proceedings of two workshops have summarised information available on the species in northern Australia, and suggested research and development (R&D) needs and directions. After an unsustained first phase of domestication of K. senegalensis in the late 1960s to the early 1970s, a second phase began in northern Australia in 2001 focused on conservation and tree improvement that is expected to provide improved planting stock by 2010. Work on other aspects of domestication is also described in this paper: the current estate and plans for extension; site suitability, soils and nutrition; silviculture and management; productivity; pests and diseases; and log and wood properties of a sample of superior trees from two mature plantations of unselected material near Darwin. Some constraints on sustainable plantation development in all these fields are identified and R&D needs proposed. A sustained R&D effort will require a strategic coordinated approach, cooperative implementation and extra funding. Large gains in plantation profitability can be expected to flow from such inputs.
Resumo:
Asia's increasing demand for both tropical and temperate fruit is projected to grow significantly. Compared with most developed countries, the production of temperate fruits (peach, nectarine, plum and apple) has expanded rapidly in China over the past 20 years. In contrast, current production of plums and peaches in neighbouring countries (Thailand and Vietnam) is very low but their fruit enters the market earlier. Thailand and Vietnam have enormous potential to satisfy a market window in the northern hemisphere period from March to May inclusive when there is little or no stone fruit on the Asian market. In Vietnam, fruit is harvested in an immature state to avoid disease and fruit fly problems and consequently lacks size and flavour. Approximately 30-40% of locally produced fruit in Vietnam does not reach market due to disease and poor handling during picking and transport. In Thailand, much of the infrastructure needed to transport, store, process and market temperate fruits successfully are now in place. However, there are currently no cool chain management or quality assurance systems to ensure a fresh product reaches the consumer with minimal deterioration. In Vietnam, growing stone fruit under the traditional system with little or minimal inputs, the farmer may receive between AUD3,000-5,000 per ha. In comparison, under higher input systems incorporating fertiliser, irrigation and pest and disease management, net returns can be increased seven-fold. Strengths and weaknesses of the current supply chains in these two countries are discussed.
Resumo:
Lutjanus argentimaculatus is an Indo-Pacific species that inhabits riverine, coastal and offshore reef habitats. An investigation of the reproductive biology of Lutjanus argentimaculatus in northeastern Queensland waters (Australia) was undertaken between 1999 and 2002. Individuals in inshore estuarine and freshwater riverine habitats were mostly immature whereas those captured in offshore reef waters were predominantly mature. Males matured at a smaller size than females, with the length-at-50%-maturity (Lm50) for males estimated to be 470.7 mm fork length (FL) and 531.4 mm FL for females. The spawning season in northeastern Queensland was mostly during the austral spring-summer and peaked in December. The presence of ripe female fish and occurrence of postovulatory follicles in histological sections provided evidence that spawning activity was more pronounced during the full and third quarter moon phases. Lutjanus argentimaculatus were highly fecund with estimates of up to 4 x 106 ova per spawning event. Immature fish concentrated in inshore areas where they were targeted by recreational fishers whereas, in offshore areas, commercial fishers caught predominantly larger, mature fish.
Resumo:
Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
This paper reports on the use of APSIM - Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004-05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004-05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004-05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.
Resumo:
This special issue of Continental Shelf Research contains 20 papers giving research results produced as part of Australia's Torres Strait Co-operative Research Centre (CRC) Program, which was funded over a three-year period during 2003-2006. Marine biophysical, fisheries, socioeconomic-cultural and extension research in the Torres Strait region of northeastern Australia was carried out to meet three aims: 1) support the sustainable development of marine resources and minimize impacts of resource use in Torres Strait; 2) enhance the conservation of the marine environment and the social, cultural and economic well being of all stakeholders, particularly the Torres Strait peoples; and 3) contribute to effective policy formulation and management decision making. Subjects covered, including commercial and traditional fisheries management, impacts of anthropogenic sediment inputs on seagrass meadows and communication of science results to local communities, have broad applications to other similar environments.
Resumo:
The traditional reductionist approach to science has a tendency to create 'islands of knowledge in a sea of ignorance', with a much stronger focus on analysis of scientific inputs rather than synthesis of socially relevant outcomes. This might be the principal reason why intended end users of climate information generally fail to embrace what the climate science community has to offer. The translation of climate information into real-life action requires 3 essential components: salience (the perceived relevance of the information), credibility (the perceived technical quality of the information) and legitimacy (the perceived objectivity of the process by which the information is shared). We explore each of these components using 3 case studies focused on dryland cropping in Australia, India and Brazil. In regards to 'salience' we discuss the challenge for climate science to be 'policy-relevant', using Australian drought policy as an example. In a village in southern India 'credibility' was gained through engagement between scientists and risk managers with the aim of building social capital, achieved only at high cost to science institutions. Finally, in Brazil we found that 'legitimacy' is a fragile, yet renewable resource that needs to be part of the package for successful climate applications; legitimacy can be easily eroded but is difficult to recover. We conclude that climate risk management requires holistic solutions derived from cross-disciplinary and participatory, user-oriented research. Approaches that combine climate, agroecological and socioeconomic models provide the scientific capabilities for establishment of 'borderless' institutions without disciplinary constraints. Such institutions could provide the necessary support and flexibility to deliver the social benefits of climate science across diverse contexts. Our case studies show that this type of solution is already being applied, and suggest that the climate science community attempt to address existing institutional constraints, which still impede climate risk management.
Resumo:
A genetic solution to breech strike control is attractive, as it is potentially permanent, cumulative, would not involve increased use of chemicals and may ultimately reduce labour inputs. There appears to be significant opportunity to reduce the susceptibility of Merinos to breech strike by genetic means although it is unlikely that in the short term breeding alone will be able to confer the degree of protection provided by mulesing and tail docking. Breeding programmes that aim to replace surgical techniques of flystrike prevention could potentially: reduce breech wrinkle; increase the area of bare skin in the perineal area; reduce tail length and wool cover on and near the tail; increase shedding of breech wool; reduce susceptibility to internal parasites and diarrhoea; and increase immunological resistance to flystrike. The likely effectiveness of these approaches is reviewed and assessed here. Any breeding programme that seeks to replace surgical mulesing and tail docking will need to make sheep sufficiently resistant that the increased requirement for other strike management procedures remains within practically acceptable bounds and that levels of strike can be contained to ethically acceptable levels.
Resumo:
The effects of inorganic amendments (fertilisers and pesticides) on soil biota that are reported in the scientific literature are, to say the least, variable. Though there is clear evidence that certain products can have significant impacts, the effects can be positive or negative. This is not surprising when you consider the number of organisms and amount of different functional groups, the number of products and various rates at which they could be applied, the methods of application and the environmental differences that occur in soil at a micro scale (within centimetres) in a paddock, let alone between paddocks, farms, catchments, regions etc. It therefore becomes extremely difficult to draw definitive conclusions from the reported results in order to summarise the impacts of these inputs. Several research trials and review papers have been published on this subject and most similarly conclude that the implications of many of the effects are still uncertain.
Resumo:
An experiment using herds of similar to 20 cows (farmlets) assessed the effects of high stocking rates on production and profitability of feeding systems based on dryland and irrigated perennial ryegrass-based pastures in a Mediterranean environment in South Australia over 4 years. A target level of milk production of 7000 L/cow.year was set, based on predicted intakes of 2.7 t DM/cow.year as concentrates, pasture intakes from 1.5 to 2.7 t/cow.year and purchased fodder. In years 1 and 2, up to 1.5 t DM/cow.year of purchased fodder was used and in years 3 and 4 the amounts were increased if necessary to enable levels of milk production per cow to be maintained at target levels. Cows in dryland farmlets calved in March to May inclusive and were stocked at 2.5, 2.9, 3.3, 3.6 and 4.1 cows/ha, while those in irrigated farmlets calved in August to October inclusive and were stocked at 4.1, 5.2, 6.3 and 7.4 cows/ha. In the first 2 years, when inputs of purchased fodder were limited, milk production per cow was reduced with higher stocking rates (P < 0.01), but in years 3 and 4 there were no differences. Mean production was 7149 kg/cow.year in years 1 and 2, and 8162 kg/cow.year in years 3 and 4. Production per hectare was very closely related to stocking rate in all years (P < 0.01), increasing from 18 to 34 t milk/ha.year for dryland farmlets (1300 to 2200 kg milk solids/ha) and from 30 to 60 t milk/ha.year for irrigated farmlets (2200 to 4100 kg milk solids/ha). Almost all of these increases were attributed to the increases in grain and purchased fodder inputs associated with the increases in stocking rate. Net pasture accumulation rates and pasture harvest were generally not altered with stocking rate, though as stocking rate increased there was a change to more of the pasture being grazed and less conserved in both dryland and irrigated farmlets. Total pasture harvest averaged similar to 8 and 14 t DM/ha.year for dryland and irrigated pastures, respectively. An exception was at the highest stocking rate under irrigation, where pugging during winter was associated with a 14% reduction in annual pasture growth. There were several indications that these high stocking rates may not be sustainable without substantial changes in management practice. There were large and positive nutrient balances and associated increases in soil mineral content (P < 0.01), especially for phosphorus and nitrate nitrogen, with both stocking rate and succeeding years. Levels under irrigation were considerably higher (up to 90 and 240 mg/kg of soil for nitrate nitrogen and phosphorus, respectively) than under dryland pastures (60 and 140 mg/kg, respectively). Soil organic carbon levels did not change with stocking rate, indicating a high level of utilisation of forage grown. Weed ingress was also high (to 22% DM) in all treatments and especially in heavily stocked irrigated pastures during winter. It was concluded the higher stocking rates used exceeded those that are feasible for Mediterranean pastures in this environment and upper levels of stocking are suggested to be 2.5 cows/ha for dryland pastures and 5.2 cows/ha for irrigated pastures. To sustain these suggested stocking rates will require further development of management practices to avoid large increases in soil minerals and weed invasion of pastures.