10 resultados para Risk levels
em eResearch Archive - Queensland Department of Agriculture
Resumo:
An ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Region was undertaken in 2010 and 2011. It assessed the risks posed by this fishery to achieving fishery-related and broader ecological objectives of both the Queensland and Australian governments, including risks to the values and integrity of the Great Barrier Reef World Heritage Area. The risks assessed included direct and indirect effects on the species caught in the fishery as well as on the structure and functioning of the ecosystem. This ecosystem-based approach included an assessment of the impacts on harvested species, by-catch, species of conservation concern, marine habitats, species assemblages and ecosystem processes. The assessment took into account current management arrangements and fishing practices at the time of the assessment. The main findings of the assessment were: Current risk levels from trawling activities are generally low. Some risks from trawling remain. Risks from trawling have reduced in the Great Barrier Reef Region. Trawl fishing effort is a key driver of ecological risk. Zoning has been important in reducing risks. Reducing identified unacceptable risks requires a range of management responses. The commercial fishing industry is supportive and being proactive. Further reductions in trawl by-catch, high compliance with rules and accurate information from ongoing risk monitoring are important. Trawl fishing is just one of the sources of risk to the Great Barrier Reef.
Resumo:
Sectors of the forest plantation industry in Australia are set to expand in the near future using species or hybrids of the spotted gums (Corymbia, Section Politaria). Plantations of these taxa have already been introduced across temperate and subtropical Australia, representing locally exotic introductions from native stands in Queensland and New South Wales. A literature review was undertaken to provide insights into the potential for pollen-mediated gene flow from these plantations into native populations. Three factors suggest that such gene flow is likely; (1) interspecific hybridisation within the genus has frequently been recorded, including between distantly related species from different sections, (2) apparent high levels of vertebrate pollinator activity may result in plantation pollen being moved over hundreds of kilometres, (3) much of the plantation estate is being established among closely related taxa and therefore few barriers to gene flow are expected. Across Australia, 20 of the 100 native Corymbia taxa were found to have regional level co-occurrence with plantations. These were located most notably within regions of north-east New South Wales and south-east Queensland, however, co-occurrence was also found in south-west Western Australia and eastern Victoria. The native species found to have co-occurrence were then assessed for the presence of reproductive barriers at each step in the process of gene flow that may reduce the number of species at risk even further. The available data suggest three risk categories exist for Corymbia. The highest risk was for gene flow from plantations of spotted gums to native populations of spotted gums. This was based on the expected limited existence of pre- and post-zygotic barriers, substantial long-distance pollen dispersal and an apparent broad period of flowering in Corymbia citriodora subsp. variegata plantations. The following risk category focussed on gene flow from Corymbia torelliana × C. c. variegata hybrid plantations into native C. c. variegata, as the barriers associated with the production and establishment of F1 hybrids have been circumvented. For the lowest risk category, Corymbia plantations may present a risk to other non-spotted gum species, however, further investigation of the particular cross-combinations is required. A list of research directions is provided to better quantify these risks. Empirical data will need to be combined within a risk assessment framework that will not only estimate the likelihood of exotic gene flow, but also consider the conservation status/value of the native populations. In addition, the potential impacts of pollen flow from plantations will need to be weighed up against their various economic and environmental benefits.
Resumo:
Over 1 billion ornamental fish comprising more than 4000 freshwater and 1400 marine species are traded internationally each year, with 8-10 million imported into Australia alone. Compared to other commodities, the pathogens and disease translocation risks associated with this pattern of trade have been poorly documented. The aim of this study was to conduct an appraisal of the effectiveness of risk analysis and quarantine controls as they are applied according to the Sanitary and Phytosanitary (SPS) agreement in Australia. Ornamental fish originate from about 100 countries and hazards are mostly unknown; since 2000 there have been 16-fold fewer scientific publications on ornamental fish disease compared to farmed fish disease, and 470 fewer compared to disease in terrestrial species (cattle). The import quarantine policies of a range of countries were reviewed and classified as stringent or non-stringent based on the levels of pre-border and border controls. Australia has a stringent policy which includes pre-border health certification and a mandatory quarantine period at border of 1-3 weeks in registered quarantine premises supervised by government quarantine staff. Despite these measures there have been many disease incursions as well as establishment of significant exotic viral, bacterial, fungal, protozoal and metazoan pathogens from ornamental fish in farmed native Australian fish and free-living introduced species. Recent examples include Megalocytivirus and Aeromonas salmonicida atypical strain. In 2006, there were 22 species of alien ornamental fish with established breeding populations in waterways in Australia and freshwater plants and molluscs have also been introduced, proving a direct transmission pathway for establishment of pathogens in native fish species. Australia's stringent quarantine policies for imported ornamental fish are based on import risk analysis under the SPS agreement but have not provided an acceptable level of protection (ALOP) consistent with government objectives to prevent introduction of pests and diseases, promote development of future aquaculture industries or maintain biodiversity. It is concluded that the risk analysis process described by the Office International des Epizooties under the SPS agreement cannot be used in a meaningful way for current patterns of ornamental fish trade. Transboundary disease incursions will continue and exotic pathogens will become established in new regions as a result of the ornamental fish trade, and this will be an international phenomenon. Ornamental fish represent a special case in live animal trade where OIE guidelines for risk analysis need to be revised. Alternatively, for countries such as Australia with implied very high ALOP, the number of species traded and the number of sources permitted need to be dramatically reduced to facilitate hazard identification, risk assessment and import quarantine controls. Lead papers of the eleventh symposium of the International Society for Veterinary Epidemiology and Economics (ISVEE), Cairns, Australia
Resumo:
Recent incidents of mycotoxin contamination (particularly aflatoxins and fumonisins) have demonstrated a need for an industry-wide management system to ensure Australian maize meets the requirements of all domestic users and export markets. Results of recent surveys are presented, demonstrating overall good conformity with nationally accepted industry marketing standards but with occasional samples exceeding these levels. This paper describes mycotoxin-related hazards inherent in the Australian maize production system and a methodology combining good agricultural practices and the hazard analysis critical control point framework to manage risk.
Resumo:
Because of the variable and changing environment, advisors and farmers are seeking systems that provide risk management support at a number of time scales. The Agricultural Production Systems Research Unit, Toowoomba, Australia has developed a suite of tools to assist advisors and farmers to better manage risk in cropping. These tools range from simple rainfall analysis tools (Rainman, HowWet, HowOften) through crop simulation tools (WhopperCropper and YieldProphet) to the most complex, APSFarm, a whole-farm analysis tool. Most are derivatives of the APSIM crop model. These tools encompass a range of complexity and potential benefit to both the farming community and for government policy. This paper describes, the development and usage of two specific products; WhopperCropper and APSFarm. WhopperCropper facilitates simulation-aided discussion of growers' exposure to risk when comparing alternative crop input options. The user can readily generate 'what-if' scenarios that separate the major influences whilst holding other factors constant. Interactions of the major inputs can also be tested. A manager can examine the effects of input levels (and Southern Oscillation Index phase) to broadly determine input levels that match their attitude to risk. APSFarm has been used to demonstrate that management changes can have different effects in short and long time periods. It can be used to test local advisors and farmers' knowledge and experience of their desired rotation system. This study has shown that crop type has a larger influence than more conservative minimum soil water triggers in the long term. However, in short term dry periods, minimum soil water triggers and maximum area of the various crops can give significant financial gains.
Resumo:
Crotalaria species containing hepatotoxic pyrrolizidine alkaloids grow widely in pastures in northern Australia and have sporadically poisoned grazing livestock. The diverse Crotalaria taxa present in these pastures include varieties, subspecies, and chemotypes not previously chemically examined. This paper reports the pyrrolizidine alkaloid composition and content of 24 Crotalaria taxa from this region and assesses the risk of poisoning in livestock consuming them. Alkaloids present in C. goreensis, C. aridicola subsp. densifolia, and C. medicaginea var. neglecta lack the esterified 1,2-unsaturated functionality required for pyrrole adduct formation, and these taxa are not hepatotoxic. Taxa with high levels of hepatotoxic alkaloids, abundance, and biomass pose the greatest risk to livestock health, particularly C. novae-hollandiae subsp. novae-hollandiae, C. ramosissima, C. retusa var. retusa, and C. crispata. Other species containing moderate alkaloid levels, C. spectabilis and C. mitchellii, also pose significant risk when locally abundant.
Resumo:
Lead (Pb) poisoning of cattle has been relatively common in Australia and sump oil has been identified as an important cause of Pb toxicity for cattle because they seem to have a tendency to drink it. Lead-free petrol has been available in Australia since 1975, so the aim of this study was to assess the current risk to cattle from drinking used automotive oils. Sump or gear box oil was collected from 56 vehicles being serviced. The low levels of Pb found suggest that the removal of leaded petrol from the Australian market as a public health measure has benefited cattle by eliminating the risk of acute poisoning from used engine oil.
Resumo:
Contaminants of man-made and natural origin need to be managed in livestock feeds to protect the health of livestock and that of human consumers of livestock products. This requires access to information on the transfer from feed to food to inform risk profiles and assessments, and to guide management interventions such as regulation or Hazard Analysis Critical Control Point approaches. This paper reviews contaminants of known and potential concern in the production of livestock feeds in Australia and compares existing but differing state and national regulatory standards with international standards. The contaminants considered include man-made organic chemical contaminants (e.g. legacy pesticides), elemental contaminants (e.g. arsenic, cadmium, lead), phytotoxins (e.g. gossypol) and mycotoxins (e.g. aflatoxins). Reference is made to scientific literature and evaluations by regulators to propose maximum levels that can be used for guidance by those involved in managing contamination incidents or developing feed safety programs. © 2013 CSIRO.
Resumo:
In irrigated cropping, as with any other industry, profit and risk are inter-dependent. An increase in profit would normally coincide with an increase in risk, and this means that risk can be traded for profit. It is desirable to manage a farm so that it achieves the maximum possible profit for the desired level of risk. This paper identifies risk-efficient cropping strategies that allocate land and water between crop enterprises for a case study of an irrigated farm in Southern Queensland, Australia. This is achieved by applying stochastic frontier analysis to the output of a simulation experiment. The simulation experiment involved changes to the levels of business risk by systematically varying the crop sowing rules in a bioeconomic model of the case study farm. This model utilises the multi-field capability of the process based Agricultural Production System Simulator (APSIM) and is parameterised using data collected from interviews with a collaborating farmer. We found sowing rules that increased the farm area sown to cotton caused the greatest increase in risk-efficiency. Increasing maize area also improved risk-efficiency but to a lesser extent than cotton. Sowing rules that increased the areas sown to wheat reduced the risk-efficiency of the farm business. Sowing rules were identified that had the potential to improve the expected farm profit by ca. $50,000 Annually, without significantly increasing risk. The concept of the shadow price of risk is discussed and an expression is derived from the estimated frontier equation that quantifies the trade-off between profit and risk.
Resumo:
Queensland fruit flies Bactrocera tryoni and B. neohumeralis are considered major quarantine pests of tomato, a major crop in the horticultural production district around Bowen, North Queensland, Australia. Preharvest and/or postharvest treatments are required to meet the market access requirements of both domestic and international trading partners. The suspension from use of dimethoate and fenthion, the two insecticides used for fruit fly control, has resulted in the loss of both pre and postharvest uses in fresh tomato. Research undertaken quantitatively at Bowen evaluated the effectiveness of pre-harvest production systems without specific fruit fly controls and postharvest mitigation measures in reducing the risk of fruit fly infestation in tomato. A district-wide trapping using cue-lure baited traps was undertaken to determine fruit fly seasonal patterns in relation to the cropping seasons. A total of 17,626 field-harvested and 11,755 pack-house tomatoes were sampled from ten farms over three cropping seasons (2006-2009). The fruit were incubated and examined for fruit fly infestation. No fruit fly infested fruit were recorded over the three seasons in either the field or the pack-house samples. Statistical analyses showed that upper infestation levels were extremely low (between 0.025 and 0.062%) at the 95% confidence level. The trap catches showed a seasonal pattern in fruit fly activity, with low numbers during the autumn and winter months, rising slightly in spring and peaking in summer. This seasonal pattern was similar over the four seasons. The main two species of fruit fly caught were B. tryoni and B. neohumeralis. Based on the results, it is clear that the risk of fruit fly infestation is extremely low under the current production systems in the Bowen region.