4 resultados para Reni, Guido, 1575-1642.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter.
Resumo:
Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries - Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 2001. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed reprint information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2001. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of avocadoes. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.
Resumo:
A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.
Resumo:
Glucosinolates are a group of sulphur-containing glycosides found in the plant order Brassicales which includes the Brassica vegetables such as broccoli, cabbage and cauliflower. When brought into contact with the plant enzymes, myrosinases, the glucosinolates break down releasing glucose and other products which serve principally in plant defence against herbivores. The most important of the products from a human nutritional viewpoint, are the isothiocyanates. These potent inducers of detoxifying enzymes bestow the distinct anti-cancer properties on these plants. Unique among tropical fruits, papaya is known to contain an abundance of one particular glucosinolate, glucotropaeolin. Other compounds that play a pivotal role in the chemical defence system of many plants are the cyanogenic glycosides. Cyanogenic glycosides are activated by plant enzymes in the event of pest attack, releasing the deterrent: toxic hydrogen cyanide. Papaya, in addition to glucosinolates, also contains low levels of cyanogenic glycosides, an unusual occurrence because it was assumed that the two classes of metabolites were mutually exclusive. Studies measuring the levels of both in the edible parts of the papaya fruit and other utilised tissues are discussed and considered in the context of potential human health ramifications. All rights reserved, Elsevier.