2 resultados para Relaxation lagrangienne
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.
Resumo:
Papaya has been used medicinally to treat an extremely broad range of ailments including intestinal worms, dengue fever, diabetes, hypertension, wound repair, and as an abortion agent. Although papaya is most commonly consumed as a ripe fruit, the plant tissues used as curatives are mainly derived from the seeds, young leaves, latex, or green immature fruit. The agents responsible for action have not been conclusively identified for all uses, but there is increasing evidence that activity may be attributable to benzyl isothiocyanate (BITC) in the case of anthelmintic and abortifacient action, and to the protease papain, and possibly chymopapain, in relation to wound repair. The location of these compounds in papaya tissues is likely to explain why different tissues are used for different ailments. Seeds, young leaves, and latex are good sources of BITC and are consequently used as a curative for intestinal worms. Immature green fruit is a good source of protease and is used as a topical application for burn wounds to accelerate tissue repair. The type of papaya tissue used may therefore provide a clue as to the active agent in ailments where papaya extracts have exhibited some activity (diabetes, hypertension, dengue fever). However, the compound(s) responsible for action remains to be identified. Modes of action of papaya extracts vary, but may include lowering blood glucose levels (diabetes), vascular muscle relaxation (hypertension), increasing blood cell count (dengue fever), stimulation of cell proliferation (wound healing), spasmodic contraction of uterine muscles (abortion), and induction of phase 2 enzymes (cancer chemoprevention). Although there has been increased study over the last decade into the physiological mode of action of papaya extracts, further increase in the knowledge of the compounds responsible for curative action will help to transfer the use of papaya from folklore remedies to mainstream medicinal use.