23 resultados para Relative growth

em eResearch Archive - Queensland Department of Agriculture


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In wheat, tillering and water-soluble carbohydrates (WSCs) in the stem are potential traits for adaptation to different environments and are of interest as targets for selective breeding. This study investigated the observation that a high stem WSC concentration (WSCc) is often related to low tillering. The proposition tested was that stem WSC accumulation is plant density dependent and could be an emergent property of tillering, whether driven by genotype or by environment. A small subset of recombinant inbred lines (RILs) contrasting for tillering was grown at different plant densities or on different sowing dates in multiple field experiments. Both tillering and WSCc were highly influenced by the environment, with a smaller, distinct genotypic component; the genotypeenvironment range covered 350750 stems m(2) and 25210mg g(1) WSCc. Stem WSCc was inversely related to stem number m(2), but genotypic rankings for stem WSCc persisted when RILs were compared at similar stem density. Low tilleringhigh WSCc RILs had similar leaf area index, larger individual leaves, and stems with larger internode cross-section and wall area when compared with high tilleringlow WSCc RILs. The maximum number of stems per plant was positively associated with growth and relative growth rate per plant, tillering rate and duration, and also, in some treatments, with leaf appearance rate and final leaf number. A common threshold of the red:far red ratio (0.390.44; standard error of the difference0.055) coincided with the maximum stem number per plant across genotypes and plant densities, and could be effectively used in crop simulation modelling as a ocut-off' rule for tillering. The relationship between tillering, WSCc, and their component traits, as well as the possible implications for crop simulation and breeding, is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry) (Bignoniaceae), is a major environmental weed in Australia. Two distinct forms of this weed (‘long’ and ‘short’ pod), with differences in leaf morphology and fruit size, occur in Australia. The long pod form has only been reported in less than fifteen localities in the whole of south-east Queensland, while the short pod form is widely distributed in Queensland and New South Wales. This study sought to compare growth traits such as specific leaf area, relative growth rate, stem length, shoot/root ratio, tuber biomass and branching architecture between these forms. These traits were monitored under glasshouse conditions over a period of 18 months. Short pod exhibited higher values of relative growth rates, stem length, number of tubers and specific leaf area than long pod, but only after 10 months of plant growth. Prior to this, long and short pod did not differ significantly. Higher values for these traits have been described as characteristics of successful colonizers. Results from this study could partly explain why the short pod form is more widely distributed in Australia while long pod is confined to a few localities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of recycled water (effluent) on 8 tropical grasses growing in 100-L bags of sand were studied in Murrumba Downs, just north of Brisbane in southern Queensland (27.4°S, 153.1°E). The species used were: Axonopus compressus (broad-leaf carpetgrass), Cynodon dactylon (bermudagrass 'Winter Green') and C. dactylon x C. transvaalensis hybrid ('Tifgreen'), Digitaria didactyla (Queensland blue couch), Paspalum notatum (bahiagrass '38824'), Stenotaphrum secundatum (buffalograss 'Palmetto'), Eremochloa ophiuroides (centipedegrass 'Centec') and Zoysia japonica (zoysiagrass 'ZT-11'). From May 2002 to June 2003, control plots were irrigated with potable water and fertilised monthly. Plots irrigated with effluent received no fertiliser from May to August 2002 (deficient phase), complete fertilisers at control rates from September to December 2002 (recovery phase) and nitrogen (N) only at control rates from January to June 2003 (supplementary phase). In October 2002, the average shoot weight of plants from the effluent plots was 4% of that from potable plots, with centipedegrass less affected than the other species (relative growth of 20%). Shoot N concentrations declined by 40% in the effluent plots from May to August 2002 (1.8 ± 0.1%) along with phosphorus (P, 0.46 ± 0.02%), potassium (K, 1.6 ± 0.2%), sulfur (S, 0.28 ± 0.02%) and manganese (Mn, 19 ± 2 mg/kg) concentrations. Only the N and Mn concentrations were below the optimum for grasses. The grasses grew satisfactorily when irrigated with effluent if it was supplemented with N. Between January and June 2003 the average weight of shoots from the effluent plots was 116% of the weight of shoots from the control plots. Shoot nutrient concentrations were also similar in the 2 regimes at this time. The recycled water supplied 23% of the N required for maximum shoot growth, 80-100% of the P and K, and 500-880% of the S, calcium and magnesium. The use of recycled water represents savings in irrigation and fertiliser costs, and reductions in the discharge of N and P to local waterways. Effluent is currently about 50% of the cost of potable water with a saving of about AU$8000/ha.year for a typical sporting field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phoracantha longicorn beetles are endemic to Australia, and some species have become significant pests of eucalypts worldwide, yet little is known about their host plant interactions and factors influencing tree susceptibility in Australia. Here, we investigate the host relationships of Phoracantha solida (Blackburn, 1894) on four eucalypt taxa (one pure species and three hybrid families), examining feeding site physical characteristics including phloem thickness, density, and moisture content, and host tree factors such as diameter, height, growth, taper, and survival. We also determine the cardinal and vertical (within-tree) and horizontal (between-tree) spatial distribution of borers. Fewer than 10% of P. solida attacks were recorded from the pure species (Corymbia citriodora subsp. variegate (Hook)), and this taxon also showed the highest survival, phloem thickness, relative growth rate, and bark:wood area. For the two most susceptible taxa, borer severity was negatively correlated with moisture content, and positively related to phloem density. Borers were nonrandomly and nonuniformly distributed within trees, and were statistically aggregated in 32% of plots. More attacks were situated on the northern side of the tree than the other aspects, and most larvae fed within the lower 50 cm of the bole, with attack height positively correlated with severity. Trees with borers had more dead neighbors, and more bored neighbors, than trees without borers, while within plots, borer incidence and severity were positively correlated. Because the more susceptible taxa overlapped with less susceptible taxa for several physical tree factors, the role of primary and secondary chemistries in determining host suitability needs to be investigated. Nevertheless, taxon, moisture content, phloem density, tree size, and mortality of neighboring trees appeared the most important physical characteristics influencing host suitability for P. solida at this site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal–stomatal traits, leaf internal anatomy, and physiological performance.• Methods: Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Key results: Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowledge of root dry matter (DM) allocation, in relation to differing vigour conferred by rootstock cultivars, is required to understand the structural relationships between rootstock and scion. We investigated the mass of roots (four size classes up to 23 mm diameter) by coring proximal to five polyembryonic mango rootstock cultivars known to differ in their effects on the vigour and productivity of scion cultivar ‘Kensington Pride’, in a field trial of 13-year-old trees. Significant differences in fine (<0.64 and 0.64–1.88 mm diameter) and small (1.88–7.50 mm) root DM contents were observed between rootstock cultivars. There was a complex relationship between the amount of feeder (fine and small size classes) roots and scion size (trunk cross sectional area, TCSA), with intermediate size trees on rootstock MYP having the most feeder roots, while the smallest trees, on the rootstock Vellaikulamban had the least of these roots. Across rootstock cultivars, tree vigour (TCSA growth rate) was negatively and significantly related to the ratio of fine root DM/scion TCSA, suggesting this may be a useful indicator of the vigour that different rootstocks confer on the scion. In contrast non-ratio root DM and scion TCSA results had no significant relationships. The significant rootstock effects on orchard root growth and tree size could not be predicted from earlier differences in nursery seedling vigour, nor did seedling vigour predict root DM allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concentration as low as 1 μM lead (Pb) is highly toxic to plants, but previous studies have typically related plant growth to the total amount of Pb added to a solution. In the present experiment, the relative fresh mass of cowpea (Vigna unguiculata) was reduced by 10% at a Pb2+ activity of 0.2 μM for the shoots and at a Pb2+ activity of 0.06 μM for the roots. The primary site of Pb2+ toxicity was the root, causing severe reductions in root growth, loss of apical dominance (shown by an increase in branching per unit root length), the formation of localized swellings behind the root tips (due to the initiation of lateral roots), and the bending of some root tips. In the root, Pb was found to accumulate primarily within the cell walls and intercellular spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g-1 up to beginning of seed growth, and then it declined linearly to 30 mg g-1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g-1. Stem [N] decreased from 30 mg g-1 early in the season to 8 mg g-1 in senesced stems at maturity. Pod [N] was constant (35 mg g-1), but grain [N] decreased from 60 mg g-1 early in seed growth to 43 mg g-1 at maturity. Total N accumulation ranged between 9 and 30 g m-2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g-1 where total biomass was -2 and during early growth period, but it decreased to 0.0176 g g-1 during the later growth period when total biomass was >218 g m-2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37-72% of leaf N and 12-56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize (Zea mays L.) is a chill-susceptible crop cultivated in northern latitude environments. The detrimental effects of cold on growth and photosynthetic activity have long been established. However, a general overview of how important these processes are with respect to the reduction of productivity reported in the field is still lacking. In this study, a model-assisted approach was used to dissect variations in productivity under suboptimal temperatures and quantify the relative contributions of light interception (PARc) and radiation use efficiency (RUE) from emergence to flowering. A combination of architectural and light transfer models was used to calculate light interception in three field experiments with two cold-tolerant lines and at two sowing dates. Model assessment confirmed that the approach was suitable to infer light interception. Biomass production was strongly affected by early sowings. RUE was identified as the main cause of biomass reduction during cold events. Furthermore, PARc explained most of the variability observed at flowering, its relative contributions being more or less important according to the climate experienced. Cold temperatures resulted in lower PARc, mainly because final leaf length and width were significantly reduced for all leaves emerging after the first cold occurrence. These results confirm that virtual plants can be useful as fine phenotyping tools. A scheme of action of cold on leaf expansion, light interception and radiation use efficiency is discussed with a view towards helping breeders define relevant selection criteria. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to examine genetic changes in reproduction traits in sows (total number born (TNB), number born alive (NBA), average piglet birth weight (ABW) and number of piglets weaned (NW), body weight prior to mating (MW), gestation length (GL) and daily food intake during lactation (DFI)) in lines of Large White pigs divergently selected over 4 years for high and low post-weaning growth rate on a restricted ration. Heritabilities and repeatabilities of the reproduction traits were also determined. The analyses were carried out on 913 litter records using average information-restricted maximum likelihood method applied to single trait animal models. Estimates of heritability for most traits were small, except for ABW (0·33) and MW (0·35). Estimates of repeatability were slightly higher than those of heritability for TNB, NBA and NW, but they were almost identical for ABW, MW, GL and DFI. After 4 years of selection, the high growth line sows had significantly heavier body weight prior to mating and produced significantly more piglets born alive with heavier average birth weight than the low line sows. There were, however, no statistical differences between the selected lines in TNB or NW. The lower food intake of high relative to low line sows during lactation was not significant, indicating that daily food intake differences found between grower pigs in the high and low lines (2·71 v. 2·76 kg/day, s.e.d. 0·024) on ad libitum feeding were not fully expressed in lactating sows. It is concluded that selection for growth rate on the restricted ration resulted in beneficial effects on important measures of reproductive performance of the sows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre diameter can vary dramatically along a wool staple, especially in the Mediterranean environment of southern Australia with its dry summers and abundance of green feed in spring. Other research results have shown a very low phenotypic correlation between fibre diameter grown between seasons. Many breeders use short staples to measure fibre diameter for breeding purposes and also to promote animals for sale. The effectiveness of this practice is determined by the relative response to selection by measuring fibre traits on a full 12 months wool staple as compared to measuring them only on part of a staple. If a high genetic correlation exists between the part record and the full record, then using part records may be acceptable to identify genetically superior animals. No information is available on the effectiveness of part records. This paper investigated whether wool growth and fibre diameter traits of Merino wool grown at different times of the year in a Mediterranean environment, are genetically the same trait, respectively. The work was carried out on about 7 dyebanded wool sections/animal.year, on ewes from weaning to hogget age, in the Katanning Merino resource flocks over 6 years. Relative clean wool growth of the different sections had very low heritability estimates of less than 0.10, and they were phenotypically and genetically poorly correlated with 6 or 12 months wool growth. This indicates that part record measurement of clean wool growth of these sections will be ineffective as indirect selection criteria to improve wool growth genetically. Staple length growth as measured by the length between dyebands, would be more effective with heritability estimates of between 0.20 and 0.30. However, these measurements were shown to have a low genetic correlation with wool grown for 12 months which implies that these staple length measurements would only be half as efficient as the wool weight for 6 or 12 months to improve total clean wool weight. Heritability estimates of fibre diameter, coefficient of variation of fibre diameter and fibre curvature were relatively high and were genetically and phenotypically highly correlated across sections. High positive phenotypic and genetic correlations were also found between fibre diameter, coefficient of variation of fibre diameter and fibre curvature of the different sections and similar measurements for wool grown over 6 or 12 months. Coefficient of variation of fibre diameter of the sections also had a moderate negative phenotypic and genetic correlation with staple strength of wool staples grown over 6 months indicating that coefficient of variation of fibre diameter of any section would be as good an indirect selection criterion to improve stable strength as coefficient of variation of fibre diameter for wool grown over 6 or 12 months. The results indicate that fibre diameter, coefficient of variation of fibre diameter and fibre curvature of wool grown over short periods of time have virtually the same heritability as that of wool grown over 12 months, and that the genetic correlation between fibre diameter, coefficient of variation of fibre diameter and fibre curvature on part and on full records is very high (rg > 0.85). This indicates that fibre diameter, coefficient of variation of fibre diameter and fibre curvature on part records can be used as selection criteria to improve these traits. However, part records of greasy and clean wool growth would be much less efficient than fleece weight for wool grown over 6 or 12 months because of the low heritability of part records and the low genetic correlation between these traits on part records and on wool grown for 12 months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane (Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores (Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities (0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments (0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mgP/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap (TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-term cane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.