20 resultados para Regrowth
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
Invasive bird-dispersed plants often share the same suite of dispersers as co-occurring native species, resulting in a complex management issue. Integrated management strategies could incorporate manipulation of dispersal or establishment processes. To improve our understanding of these processes, we quantified seed rain, recruit and seed bank density, and species richness for bird-dispersed invasive and native species in three early successional subtropical habitats in eastern Australia: tree regrowth, shrub regrowth and native restoration plantings. We investigated the effects of environmental factors (leaf area index (LAI), distance to edge, herbaceous ground cover and distance to nearest neighbour) on seed rain, seed bank and recruit abundance. Propagule availability was not always a good predictor of recruitment. For instance, although native tree seed rain density was similar, and species richness was higher, in native plantings, compared with tree regrowth, recruit density and species richness were lower. Native plantings also received lower densities of invasive tree seed rain than did tree regrowth habitats, but supported a similar density of invasive tree recruits. Invasive shrub seed rain was recorded in highest densities in shrub regrowth sites, but recruit density was similar between habitats. We discuss the role of microsite characteristics in influencing post-dispersal processes and recruit composition, and suggest ways of manipulating these processes as part of an integrated management strategy for bird-dispersed weeds in natural areas.
Resumo:
Eriophyid mites (Acari: Eriophyoidea: Eriophyidae: Rhombacus sp. and Acalox ptychocarpi Keifer) are recently-emerged pests of commercial eucalypt plantations in subtropical Australia. They cause severe blistering, necrosis and leaf loss to Corymbia citriodora subsp. variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, one of the region's most important hardwood plantation species. In this study we examine the progression, incidence and severity of these damage symptoms. We also measure within-branch colonisation by mites to identify dispersive stages, and estimate the relative abundance of the two co-occurring species. Rhombacus sp., an undescribed species, was numerically dominant, accounting for over 90% of all adult mites. Adults were the dispersive stage, moving mostly within branches, but 12% of recruitment onto new leaves occurred on previously uninfested branches. Damage incidence and severity were correlated, while older leaves had more damage than younger leaves. "Patch-type" damage was less frequent but was associated with higher mite numbers and damage scores than "spot-type" damage, while leaf discoloration symptoms related mostly to leaf age.
Resumo:
A bio-economic modelling framework (GRASP-ENTERPRISE) was used to assess the implications of retaining woody regrowth for carbon sequestration on a case study beef grazing property in northern Australia. Five carbon farming scenarios, ranging from 0% to 100% of the property regrowth retained for carbon sequestration, were simulated over a 20-year period (1993–2012). Dedicating regrowth on the property for carbon sequestration reduced pasture (up to 40%) and herd productivity (up to 20%), and resulted in financial losses (up to 24% reduction in total gross margin). A net carbon income (income after grazing management expenses are removed) of $2–4 per t CO2-e was required to offset economic losses of retaining regrowth on a moderately productive (~8 ha adult equivalent–1) property where income was from the sale of weaners. A higher opportunity cost ($ t–1 CO2-e) of retaining woody regrowth is likely for feeder steer or finishing operations, with improved cattle prices, and where the substantial transaction and reporting costs are included. Although uncertainty remains around the price received for carbon farming activities, this study demonstrated that a conservatively stocked breeding operation can achieve positive production, environmental and economic outcomes, including net carbon stock. This study was based on a beef enterprise in central Queensland’s grazing lands, however, the approach and learnings are expected to be applicable across northern Australia where regrowth is present.
Resumo:
Agricultural land has been identified as a potential source of greenhouse gas emissions offsets through biosequestration in vegetation and soil. In the extensive grazing land of Australia, landholders may participate in the Australian Government’s Emissions Reduction Fund and create offsets by reducing woody vegetation clearing and allowing native woody plant regrowth to grow. This study used bioeconomic modelling to evaluate the trade-offs between an existing central Queensland grazing operation, which has been using repeated tree clearing to maintain pasture growth, and an alternative carbon and grazing enterprise in which tree clearing is reduced and the additional carbon sequestered in trees is sold. The results showed that ceasing clearing in favour of producing offsets produces a higher net present value over 20 years than the existing cattle enterprise at carbon prices, which are close to current (2015) market levels (~$13 t–1 CO2-e). However, by modifying key variables, relative profitability did change. Sensitivity analysis evaluated key variables, which determine the relative profitability of carbon and cattle. In order of importance these were: the carbon price, the gross margin of cattle production, the severity of the tree–grass relationship, the area of regrowth retained, the age of regrowth at the start of the project, and to a lesser extent the cost of carbon project administration, compliance and monitoring. Based on the analysis, retaining regrowth to generate carbon income may be worthwhile for cattle producers in Australia, but careful consideration needs to be given to the opportunity cost of reduced cattle income.
Resumo:
The emerging carbon economy will have a major impact on grazing businesses because of significant livestock methane and land-use change emissions. Livestock methane emissions alone account for similar to 11% of Australia's reported greenhouse gas emissions. Grazing businesses need to develop an understanding of their greenhouse gas impact and be able to assess the impact of alternative management options. This paper attempts to generate a greenhouse gas budget for two scenarios using a spread sheet model. The first scenario was based on one land-type '20-year-old brigalow regrowth' in the brigalow bioregion of southern-central Queensland. The 50 year analysis demonstrated the substantially different greenhouse gas outcomes and livestock carrying capacity for three alternative regrowth management options: retain regrowth (sequester 71.5 t carbon dioxide equivalents per hectare, CO2-e/ha), clear all regrowth (emit 42.8 t CO2-e/ha) and clear regrowth strips (emit 5.8 t CO2-e/ha). The second scenario was based on a 'remnant eucalypt savanna-woodland' land type in the Einasleigh Uplands bioregion of north Queensland. The four alternative vegetation management options were: retain current woodland structure (emit 7.4 t CO2-e/ha), allow woodland to thicken increasing tree basal area (sequester 20.7 t CO2-e/ha), thin trees less than 10 cm diameter (emit 8.9 t CO2-e/ha), and thin trees <20 cm diameter (emit 12.4 t CO2-e/ha). Significant assumptions were required to complete the budgets due to gaps in current knowledge on the response of woody vegetation, soil carbon and non-CO2 soil emissions to management options and land-type at the property scale. The analyses indicate that there is scope for grazing businesses to choose alternative management options to influence their greenhouse gas budget. However, a key assumption is that accumulation of carbon or avoidance of emissions somewhere on a grazing business (e.g. in woody vegetation or soil) will be recognised as an offset for emissions elsewhere in the business (e.g. livestock methane). This issue will be a challenge for livestock industries and policy makers to work through in the coming years.
Resumo:
The introduction describes productive forest in Queensland and summaries the principles of native forest management that achieve optimum productivity. Case study 1 deals with thinning an even-aged regrowth forest. It shows how thinning the stand actively manages the future composition and structure to improve productivity in the best stems and increase the commercial value of the next harvest. Case study 2 describes restoring productivity in a high-graded spotted gum - ironbark forest. It shows that defective and non-saleable trees should be removed so they do not repress the future stand; and that regeneration should be thinned, retaining the best trees in adequate growing space. Case study 3 discusses on-farm value adding for hardwood forests. It shows how long-term viability and maximum productivity and returns depend on the best management practices and knowing how to obtain the best returns from a range of forest products. Case study 4 examines integrated harvesting in a eucalypt forest. It shows how integrating the harvest enables the full range of timber products are harvested and sold for their maximum value while reducing the amount of waste.
Resumo:
Open-pollination: originated as a chance seedling from Z44 (maternal clonal parent), obtained from Beltsville MD in 1981, with an unknown pollen source from a zoysia grass germplasm field nursery at the Texas Agricultural Experiment Station in Dallas. ‘Palisades’ was selected over the parent Z44 on the basis of its lower tendency to produce thatch, its excellent lateral growth habit and its superior mowing qualities. ‘Palisades’ has been vegetatively propagated, and is uniform in growth expression. No seedling establishment from ‘Palisades’ has been noticed in either greenhouse or field studies. Selection criteria: rapid regrowth and spread by, and/or from, stolons and rhizomes; turf colour and density; tolerance to low mowing; winter hardiness; shade tolerance; low water use requirements. Propagation: vegetative. Breeder: Milton C. Engelke, Dallas, USA. PBR Certificate Number 2594, Application Number 2001/199, granted 26 October 2004.
Resumo:
Drying regrowth native hardwoods to satisfactory moisture levels is a significant challenge for the processing industry. Dried quality is becoming increasingly important as sawn hardwood continues to move away from structural markets into appearance applications, but more difficult to achieve as the resource mix being processed becomes younger. An accurate, predictive drying model is a powerful tool in schedule development, decreasing the reliance on expensive, repetitive drying trials. This project updates the KilnSched drying model to allow the drying behaviour of regrowth blackbutt, jarrah, messmate, spotted gum and Victorian ash to be modeled more accurately. The effect of high temperature drying and humidity treatments on spotted gum were also investigated, as was the economics of various drying methods on spotted gum and blackbutt.
Resumo:
The aim of this project was to investigate the suitability of thinnings from a range of plantation species for use as vineyard posts. The hardwood plantation species examined were Eucalyptus grandis, E. globulus, E. pilularis, E. dunnii, E. cladocalyx and Corymbia maculata, while Acacia mearnsii was obtained from natural regrowth. The softwood plantation species were P. elliottii, P. radiata and Araucaria cunninghamii. Variables examined included: three air drying regimes; microwave conditioning of E. grandis and E. globulus; two preservative treatments for hardwoods (alkaline copper quaternary compound (ACQ) and pigment emulsified creosote (PEC)); and two preservative treatments for softwood species (ACQ and, for Pinus radiata copper chromium arsenic (CCA)). A further aim was to install treated posts in commercial vineyards for demonstration purposes. From an earlier trial of three hardwood species treated with PEC, demonstration posts previously installed were also to be inspected annually for three years, and any movement of polycyclic aromatic hydrocarbons (PAH) from the posts monitored.
Resumo:
A protocol was developed for short-term preservation and distribution of the plantation eucalypt, Corymbia torelliana × C. citriodora, using alginate-encapsulated shoot tips and nodes as synthetic seeds. Effects of sowing medium, auxin concentration, storage temperature and planting substrate on shoot regrowth or conversion into plantlets were assessed for four different clones. High frequencies of shoot regrowth (76–100%) from encapsulated explants were consistently obtained in hormone-free half- and full-strength Murashige and Skoog (MS) sowing media. Conversion into plantlets from synthetic seeds was achieved on half-strength MS medium by treating shoot tips or nodes with 4.9–78.4 μM IBA prior to encapsulation. Pre-treatment with 19.6 μM IBA provided 62–100% conversion, and 95–100% of plantlets survived after acclimatisation under nursery conditions. Synthetic seeds containing explants pre-treated with IBA were stored for 8 weeks much more effectively at 25°C than at 4°C, with regrowth frequencies of 50–84% at 25°C compared with 0–4% at 4°C. To eliminate the in vitro culture step after encapsulation, synthetic seeds were allowed to pre-convert before sowing directly onto a range of ex vitro non-sterile planting substrates. Highest frequencies (46–90%) of plantlet formation from pre-converted synthetic seeds were obtained by transferring shoot tip-derived synthetic seeds onto an organic compost substrate. These plantlets exhibited almost 100% survival in the nursery without mist irrigation. Pre-conversion of non-embryonic synthetic seeds is a novel technique that provides a convenient alternative to somatic embryo-derived artificial seeds.
Resumo:
Alginate encapsulation is a simple and cost-effective technique to preserve plant germplasm but there are only a few reports available on preservation of encapsulated explants of two highly valuable groups of tropical trees, the eucalypts (Myrtaceae) and mahoganies (Meliaceae). This study investigated alginate encapsulation for preservation of the eucalypt hybrid, Corymbia torelliana × C. citriodora, and the African mahogany, Khaya senegalensis. We assessed shoot regrowth of encapsulated shoot tips and nodes after storage for 0, 3, 6 and 12 months on media varying in sucrose and nutrient content, under storage conditions of 14°C and zero-irradiance. Encapsulated explants of both trees were preserved most effectively on high-nutrient (half-strength Murashige and Skoog) medium containing 1% sucrose, which provided very high frequencies of shoot regrowth (92–100% for Corymbia and 71–98% for Khaya) and excellent shoot development after 12 months’ storage. This technique provides an extremely efficient means for storage and exchange of eucalypts and mahoganies, ideally suited for incorporation into plant breeding and germplasm conservation programs.
Resumo:
Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.
Resumo:
Understanding the reproductive biology of Calotropis procera (Aiton) W.T. Aiton, an invasive weed of northern Australia, is critical for development of effective management strategies. Two experiments are reported on. In Experiment 1 seed longevity of C. procera seeds, exposed to different soil type (clay and river loam), pasture cover (present and absent) and burial depth (0, 2.5, 10 and 20 cm) treatments were examined. In Experiment 2 time to reach reproductive maturity was studied. The latter experiment included its sister species, C. gigantea (L.) W.T. Aiton, for comparison and two separate seed lots were tested in 2009 and 2012 to determine if exposure to different environmental conditions would influence persistence. Both seed lots demonstrated a rapid decline in viability over the first 3 months and declined to zero between 15 and 24 months after burial. In Experiment 1, longevity appeared to be most influenced by rainfall patterns and associated soil moisture, burial depth and soil type, but not the level of pasture cover. Experiment 2 showed that both C. procera and C. gigantea plants could flower once they had reached an average height of 85 cm. However, they differed significantly in terms of basal diameter at first flowering with C. gigantea significantly smaller (31 mm) than C. procera (45 mm). On average, C. gigantea flowered earlier (125 days vs 190 days) and set seed earlier (359 days vs 412 days) than C. procera. These results suggest that, under similar conditions to those that prevailed in the present studies, land managers could potentially achieve effective control of patches of C. procera in 2 years if they are able to kill all original plants and treat seedling regrowth frequently enough to prevent it reaching reproductive maturity. This suggested control strategy is based on the proviso that replenishment of the seed bank is not occurring from external sources (e.g. wind and water dispersal).
Resumo:
SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.