35 resultados para Regional Communities

em eResearch Archive - Queensland Department of Agriculture


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grazing is a major land use in Australia's rangelands. The 'safe' livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the 'best estimates' of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as 'known uncertainties' and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands ( including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the 'best estimate' projections, in combination with appropriate responses to short-term (1-5 years) climate variability, would reduce the risk of resource degradation. Climate change projections - including changes in rainfall, temperature, carbon dioxide and other climatic variables - if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of. re, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3 degrees C) was likely to result in a decrease in forage production for most rangeland locations (e. g. -21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (-33% or -9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3 degrees C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the 'best estimate' of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nassella trichotoma (Nees) Hack. ex Arechav. (common name, serrated tussock) occupies large areas of south-eastern Australia and has considerable scope for expansion in the Northern Tablelands of New South Wales. This highly invasive grass reduces pasture productivity and has the potential to severely affect the region’s economy by decreasing the livestock carrying capacity of grazing land. Other potential consequences of this invasion include increased fuel loads and displacement of native plants, thereby threatening biodiversity. Rural property owners in the Northern Tablelands were sent a mail questionnaire that examined use of measures to prevent new outbreaks of the weed. The questionnaire was sent to professional farmers as well as lifestyle farmers (owners of rural residential blocks and hobby farms) and 271 responses were obtained (a response rate of 18%). Key findings were respondents’ limited capacity to detect N. trichotoma, and low adoption of precautions to control seed spread by livestock, vehicles and machinery. This was particularly the case among lifestyle farmers. There have been considerable recent changes to biosecurity governance arrangements in New South Wales, and now is an ideal time for regulators and information providers to consider how to foster regional communities’ engagement in biosecurity, including the adoption of measures that have the capacity to curtail the spread of N. trichotoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New regional extension project for the cotton/grains farming systems on the Darling Downs and Border Rivers with CRDC and Cotton CRC based on the CRDC/Agri-Science Queensland discussion paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CQ Cotton Regional Extension project has been a key to the delivery of emerging, cutting edge research information and knowledge to the Central Queensland cotton industry. The direct relevance of southern research to cotton production under the conditions experienced in CQ always has been an issue which could be addressed through regional assessment and adaptation. The project links the national research to the region through development and extension, with a strong focus on the major industry production issues including but not limited to disease, Integrated Pest Management (IPM), soils, nutrition and integrated weed management. Susan Mass has supported the implementation of national industry-wide programs particularly the industry Best Management Practices program (myBMP). This project has successfully transitioned to a focus on delivering national outcomes in target lead areas as part of National Development and Delivery Team established by Cotton CRC, CRDC and Cotton Australia, while maintaining a regional extension presence for Central Queensland cotton & grain farming systems. Susan Mass has very effectively merged and integrated strong regional extension support to cotton growers in Central Queensland with delivery of industry extension priorities across the entire industry in the Development and Delivery Team model. Susan is the target lead for disease and farm hygiene. Recognising the challenges of having regionally relevant research in Central Queensland, this project has facilitated locally based research including boll rot, Bt cotton resistance management, and mealybug biology through strong collaborations. This collaborative approach has included linkage to Department of Environment and Resource Managmeent (DERM) groups and myBMP programs resulting in a high uptake in CQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defining goals and objectives is a critical component of adaptive management of natural resources because they provide the basis on which management strategies can be designed and evaluated. The aims of this study are: (i) to apply and test a collaborative method to elicit goals and objectives for inshore fisheries and biodiversity in the coastal zone of a regional city in Australia; (ii) to understand the relative importance of management objectives for different community members and stakeholders; and (iii) to understand how diverse perceptions about the importance of management objectives can be used to support multiple-use management in Australia’s iconic Great Barrier Reef. Management goals and objectives were elicited and weighted using the following steps: (i) literature review of management objectives, (ii) development of a hierarchy tree of objectives, and (iii) ranking of management objectives using survey methods. The overarching goals identified by the community group were to: (1) protect and restore inshore environmental assets; (2) improve governance systems; and (3) improve regional (socio-economic) well-being. Interestingly, these goals differ slightly from the usual triple-bottom line objectives (environmental, social and economic) often found in the literature. The objectives were ranked using the Analytical Hierarchical Process, where a total of 141 respondents from industry, government agencies, and community from across Queensland State undertook the survey. The environment goal received the highest scores, followed by governance and lastly well-being. The approach to elicit and rank goals and objectives developed in this study can be used to effectively support coastal resource management by providing opportunities for local communities to participate in the setting of regional objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defining goals and objectives is a critical component of adaptive management of natural resources because they provide the basis on which management strategies can be designed and evaluated. The aims of this study are: (i) to apply and test a collaborative method to elicit goals and objectives for inshore fisheries and biodiversity in the coastal zone of a regional city in Australia; (ii) to understand the relative importance of management objectives for different community members and stakeholders; and (iii) to understand how diverse perceptions about the importance of management objectives can be used to support multiple-use management in Australia’s iconic Great Barrier Reef. Management goals and objectives were elicited and weighted using the following steps: (i) literature review of management objectives, (ii) development of a hierarchy tree of objectives, and (iii) ranking of management objectives using survey methods. The overarching goals identified by the community group were to: (1) protect and restore inshore environmental assets; (2) improve governance systems; and (3) improve regional (socio-economic) well-being. Interestingly, these goals differ slightly from the usual triple-bottom line objectives (environmental, social and economic) often found in the literature. The objectives were ranked using the Analytical Hierarchical Process, where a total of 141 respondents from industry, government agencies, and community from across Queensland State undertook the survey. The environment goal received the highest scores, followed by governance and lastly well-being. The approach to elicit and rank goals and objectives developed in this study can be used to effectively support coastal resource management by providing opportunities for local communities to participate in the setting of regional objectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban encroachment on dense, coastal koala populations has ensured that their management has received increasing government and public attention. The recently developed National Koala Conservation Strategy calls for maintenance of viable populations in the wild. Yet the success of this, and other, conservation initiatives is hampered by lack of reliable and generally accepted national and regional population estimates. In this paper we address this problem in a potentially large, but poorly studied, regional population in the State that is likely to have the largest wild populations. We draw on findings from previous reports in this series and apply the faecal standing-crop method (FSCM) to derive a regional estimate of more than 59 000 individuals. Validation trials in riverine communities showed that estimates of animal density obtained from the FSCM and direct observation were in close agreement. Bootstrapping and Monte Carlo simulations were used to obtain variance estimates for our population estimates in different vegetation associations across the region. The most favoured habitat was riverine vegetation, which covered only 0.9% of the region but supported 45% of the koalas. We also estimated that between 1969 and 1995 -30% of the native vegetation associations that are considered as potential koala habitat were cleared, leading to a decline of perhaps 10% in koala numbers. Management of this large regional population has significant implications for the national conservation of the species: the continued viability of this population is critically dependent on the retention and management of riverine and residual vegetation communities, and future vegetation-management guidelines should be cognisant of the potential impacts of clearing even small areas of critical habitat. We also highlight eight management implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed data on seagrass distribution, abundance, growth rates and community structure information were collected at Orman Reefs in March 2004 to estimate the above-ground productivity and carbon assimilated by seagrass meadows. Seagrass meadows were re-examined in November 2004 for comparison at the seasonal extremes of seagrass abundance. Ten seagrass species were identified in the meadows on Orman Reefs. Extensive seagrass coverage was found in March (18,700 ha) and November (21,600 ha), with seagrass covering the majority of the intertidal reef-top areas and a large proportion of the subtidal areas examined. There were marked differences in seagrass above-ground biomass, distribution and species composition between the two surveys. Major changes between March and November included a substantial decline in biomass for intertidal meadows and an expansion in area of subtidal meadows. Changes were most likely a result of greater tidal exposure of intertidal meadows prior to November leading to desiccation and temperature-related stress. The Orman Reef seagrass meadows had a total above-ground productivity of 259.8 t DW day-1 and estimated carbon assimilation of 89.4 t C day-1 in March. The majority of this production came from the intertidal meadows which accounted for 81% of the total production. Intra-annual changes in seagrass species composition, shoot density and size of meadows measured in this study were likely to have a strong influence on the total above-ground production during the year. The net estimated above-ground productivity of Orman Reefs meadows in March 2004 (1.19 g C m-2 day-1) was high compared with other tropical seagrass areas that have been studied and also higher than many other marine, estuarine and terrestrial plant communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common explanation for species diversity increasing towards the tropics is the corresponding increase in habitats (spatial heterogeneity). Consequently, a monoculture (like cotton in Australia) which is grown along a latitudinal gradient, should have the same degree of species diversity throughout its range. We tested to see if diversity in a dominant cotton community (spiders) changed with latitude, and if the community was structurally identical in different parts of Australia. We sampled seven sites extending over 20 degrees of latitude. At each site we sampled 1-3 fields 3-5 times during the cotton growing season using pitfall traps and beatsheets, recording all the spiders collected to family. We found that spider communities in cotton are diverse, including a large range of foraging guilds, making them suitable for a conservation biological control programme. We also found that spider diversity increased from high to low latitudes, and the communities were different, even though the spiders were in the same monocultural habitat. Spider beatsheet communities around Australia were dominated by different families, and responded differently to seasonal changes, indicating that different pest groups would be targeted at different locations. These results show that diversity can increase from high to low latitudes, even if spatial heterogeneity is held constant, and that other factors external to the cotton crop are influencing spider species composition. Other models which may account for the latitudinal gradient, such as non-equilibrium regional processes, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland Department of Primary Industries and Fisheries Library achieved a significant breakthrough in the provision of Open Access to Australian publicly funded research with the launch of its eResearch Archive (eRA). With more than one thousand publication records, journal articles, conferences papers and research reports now available to farmers, industry representatives, academics, researchers, students and members of the public throughout the world, the archive is the first web accessible multidisciplinary science institutional repository produced by an Australian government department.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much research in understanding plant diseases has been undertaken, but there has been insufficient attention given to dealing with coordinated approaches to preventing and managing diseases. A global management approach is essential to the long-term sustainability of banana production. This approach would involve coordinated surveys, capacity building in developing countries, development of disease outbreak contingency plans and coordinated quarantine awareness, including on-line training in impact risk assessment and web-based diagnostic software. Free movement of banana plants and products between some banana-producing countries is causing significant pressure on the ability to manage diseases in banana. The rapid spread of Fusarium oxysporum f. sp. cubense 'tropical race 4' in Asia, bacterial wilts in Africa and Asia and black leaf streak [Mycosphaerella fijiensis] in Brazil and elsewhere are cases in point. The impact of these diseases is devastating, severely cutting family incomes and jeopardising food security around the globe. Agreements urgently need to be reached between governments to halt the movement of banana plants and products between banana-producing countries before it is too late and global food security is irreparably harmed. Black leaf streak, arguably the most serious banana disease, has become extremely difficult to control in commercial plantations in various parts of the world. Sometimes in excess of 50 fungicide sprays have to be applied each year. Disease eradication and effective disease control is not possible because there is no control of disease inoculum in non-commercial plantings in these locations. Additionally, there have been enormous sums of money invested in international banana breeding programmes over many years only to see the value of hybrid products lost too soon. 'Goldfinger' (AAAB, syn. 'FHIA-01'), for example, has recently been observed severely affected by black leaf streak in Samoa. Resistant cultivars alone cannot be relied upon in the fight against this disease. Real progress in control may only come when the local communities are engaged and become actively involved in regional programmes. Global recommendations are long overdue and urgently needed to help ensure the long-term sustainable utilisation of the products of the breeding programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protection of coastal wetland environments is an important prerequisite to effective and sustainable inshore fisheries management and conservation of habitats for use by future generations. Mangroves, saltmarshes, seagrasses and non vegetated habitats directly support local and regional inshore and offshore fisheries through the provision of food, shelter, breeding and nursery grounds. As such, these wetland environments have significant economic value as well as their intrinsic aesthetic and ecological values. This report summarises the results of the mapping undertaken in the Central Queensland Coast from Sand Bay to Keppel Bay (hereafter referred to as the Study Area). The study was undertaken in order to: 1. document and map the coastal wetland communities along the Queensland coastline from Sand Bay (20.93°S, 149.04°E) to Keppel Bay (23.65°S, 151.07°E); 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration.