7 resultados para Refinement of (SOR1NM2)
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The value of CLIMEX models to inform biocontrol programs was assessed, including predicting the potential distribution of biocontrol agents and their subsequent population dynamics, using bioclimatic models for the weed Parkinsonia aculeata, two Lantana camara biocontrol agents, and five Mimosa pigra biocontrol agents. The results showed the contribution of data types to CLIMEX models and the capacity of these models to inform and improve the selection, release and post release evaluation of biocontrol agents. Foremost among these was the quality of spatial and temporal information as well as the extent to which overseas range data samples the species’ climatic envelope. Post hoc evaluation and refinement of these models requires improved long-term monitoring of introduced agents and their dynamics at well selected study sites. The authors described the findings of these case studies, highlighted their implications, and considered how to incorporate models effectively into biocontrol programs.
Resumo:
This project was designed to provide the structural softwood processing industry with the basis for improved green and dry grading to allow maximise MGP grade yields, consistent product performance and reduced processing costs. To achieve this, advanced statistical techniques were used in conjunction with state-of-the-art property measurement systems. Specifically, the project aimed to make two significant steps forward for the Australian structural softwood industry: • assessment of technologies, both existing and novel, that may lead to selection of a consistent, reliable and accurate device for the log yard and green mill. The purpose is to more accurately identify and reject material that will not make a minimum grade of MGP10 downstream; • improved correlation of grading MOE and MOR parameters in the dry mill using new analytical methods and a combination of devices. The three populations tested were stiffness-limited radiata pine, strength-limited radiata pine and Caribbean pine. Resonance tests were conducted on logs prior to sawmilling, and on boards. Raw data from existing in-line systems were captured for the green and dry boards. The dataset was analysed using classical and advanced statistical tools to provide correlations between data sets and to develop efficient strength and stiffness prediction equations. Stiffness and strength prediction algorithms were developed from raw and combined parameters. Parameters were analysed for comparison of prediction capabilities using in-line parameters, off-line parameters and a combination of in-line and off-line parameters. The results show that acoustic resonance techniques have potential for log assessment, to sort for low stiffness and/or low strength, depending on the resource. From the log measurements, a strong correlation was found between the average static MOE of the dried boards within a log and the predicted value. These results have application in segregating logs into structural and non-structural uses. Some commercial technologies are already available for this application such as Hitman LG640. For green boards it was found that in-line and laboratory acoustic devices can provide a good prediction of dry static MOE and moderate prediction for MOR.There is high potential for segregating boards at this stage of processing. Grading after the log breakdown can improve significantly the effectiveness of the mill. Subsequently, reductions in non-structural volumes can be achieved. Depending on the resource it can be expected that a 5 to 8 % reduction in non structural boards won’t be dried with an associated saving of $70 to 85/m3. For dry boards, vibration and a standard Metriguard CLT/HCLT provided a similar level of prediction on stiffness limited resource. However, Metriguard provides a better strength prediction in strength limited resources (due to this equipment’s ability to measure local characteristics). The combination of grading equipment specifically for stiffness related predictors (Metriguard or vibration) with defect detection systems (optical or X-ray scanner) provides a higher level of prediction, especially for MOR. Several commercial technologies are already available for acoustic grading on board such those from Microtec, Luxscan, Falcon engineering or Dynalyse AB for example. Differing combinations of equipment, and their strategic location within the processing chain, can dramatically improve the efficiency of the mill, the level of which will vary depending of the resource. For example, an initial acoustic sorting on green boards combined with an optical scanner associated with an acoustic system for grading dry board can result in a large reduction of the proportion of low value low non-structural produced. The application of classical MLR on several predictors proved to be effective, in particular for MOR predictions. However, the usage of a modern statistics approach(chemometrics tools) such as PLS proved to be more efficient for improving the level of prediction. Compared to existing technologies, the results of the project indicate a good improvement potential for grading in the green mill, ahead of kiln drying and subsequent cost-adding processes. The next stage is the development and refinement of systems for this purpose.
Resumo:
The principal aim of the project was to contribute to the continuing adoption of integrated pest management (IPM) by grain growers in the GRDC's northern region, specifically, the Darling Downs and Central Queensland. This project provided an ongoing commitment to the development and refinement of pest management tactics, and continued support for the grower community by raising awareness of management options and strategies for their implementation. This outcome was achieved through facilitated learning by growers and their advisers via grower group meetings, field day demonstrations, technical literature and presentations by entomologists at technical forums.
Resumo:
The survival and growth of black tiger prawn (Penaeus monodon) juveniles (~3.3 g) were compared after feeding in tanks over one month with several prepared diets based on organically certified ingredients. The extrusion process in the manufacture of pelletised experimental diets was similar to processes used in commercial plants and was closely documented. The daily feeding rate (6% of starting mean body weight) was split equally into two feeds, one in the morning and one in the afternoon. All diets tested produced high survival (97-100%). A widely-used commercial Australian prawn feed was used as a control diet. It contained 41.2% protein with 29.5 g kg-1 lysine, and produced the highest (P<0.05) growth (117% weight gain). Three of the experimental organic diets tested (namely, 1. wheat + soy, 2. pig weaner diet + soy, and 3. pig weaner diet + dried fish waste) produced moderate growth (73–77% weight gain). These contained 33%, 36% or 31% protein, respectively, and produced better (P<0.05) growth than diets utilising a range of other prospective ingredients (eg: wheat + dried scallop gut, wheat + fish waste, wheat + chickpea, or wheat + macadamia meal, containing 23%, 25%, 29% or 24% protein, respectively). An unfed control-treatment produced the lowest (P<0.05) growth (4% weight gain). The water stability of the experimental diets that produced the best growth was poorer than the commercial diet, suggesting that improvements in this aspect of these organic feed’s manufacture could result in additional performance benefits and possibly reduced feed wastage. Analyses revealed a linear relationship between diet performance (in terms of weight gains) and the protein and lysine contents of diets. About 70% of diet performance was explained by these factors. The superior performance of the commercial diet could be attributed primarily to its formulation using mainly marine proteins, as well as a range of other unknown factors (commercial in confidence). These other factors range from use of feed attractants, better knowledge of ingredient nutrient availability, different extrusion conditions and the use of other unspecified micro-nutrients not present in the experimental diets. The organic diets studied still require a degree of fine-tuning before structured commercial uptake. This would sensibly include further detailed investigations of the composition and nutrient availabilities of these and other organic dietary ingredients, and refinement of the extrusion process for formulated diets.
Resumo:
Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.
Resumo:
Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.
Resumo:
The results of drying trials show that vacuum drying produces material of the same or better quality than is currently being produced by conventional methods within 41 to 66 % of the drying time, depending on the species. Economic analysis indicates positive or negative results depending on the species and the size of drying operation. Definite economic benefits exist by vacuum drying over conventional drying for all operation sizes, in terms of drying quality, time and economic viability, for E. marginata and E. pilularis. The same applies for vacuum drying C. citriodora and E. obliqua in larger drying operations (kiln capacity 50 m3 or above), but not for smaller operations at this stage. Further schedule refinement has the ability to reduce drying times further and may improve the vacuum drying viability of the latter species in smaller operations.