3 resultados para Recontextualised found object
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The ocellated angelshark, Squatina tergocellatoides, Chen, 1963 is redescribed from the holotype, which was thought to be lost. Its recent recovery has allowed for a revised description, including new data, and comparison to other Western Pacific squatinids. Squatina tergocellatoides can be distinguished from its congeners by three pairs of prominent large black spots, each with a diameter greater than eye length; two on each pectoral fin at anterior and posterior angles and one on each side near the tail base; another three pairs of lesser defined spots, one large spot on base of each dorsal fin and one located laterally on each side of tail located below first dorsal fin. Ventral surface is uniformly white to cream coloured, and margins of pectoral fins and tail similar in colour to dorsal side. Pectoral fins with angular lateral apices and rounded posterior lobe, pelvic fin tips not reaching origin of first dorsal fin, strongly fringed nasal barbels, small inter-orbital space, head and mouth lengths, broad internarial width and pelvic fin base, a very small pelvic girdle width, and a caudal fin with triangular ventral lobe greater in length than dorsal lobe. Comments on additional specimens are provided, as well as observations on biogeography. A review of western Pacific squatinids is also provided.
Resumo:
The parasitoid of solenopsis mealybug, namely Aenasius bambawalei, has been recorded for the first time in Emerald, Queensland, Australia. The parasitoid was found during a routine inspection of ratoons on the western side of Emerald on 27 November 2012. During a recent trip to Theodore, two casings of parasitized mealybugs (already hatched) were also found, one on pigweed [ Amaranthus] and one in the field on a cotton plant.
Resumo:
Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific. © 2015 Macmillan Publishers Limited.