4 resultados para Real Exchange Rates

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adoption of conservation tillage practices on Red Ferrosol soils in the inland Burnett area of south-east Queensland has been shown to reduce runoff and subsequent soil erosion. However, improved infiltration resulting from these measures has not improved crop performance and there are suggestions of increased loss of soil water via deep drainage. This paper reports data monitoring soil water under real and artificial rainfall events in commercial fields and long-term tillage experiments, and uses the data to explore the rate and mechanisms of deep drainage in this soil type. Soils were characterised by large drainable porosities (≥0.10 m3/m3) in all parts of the profile to depths of 1.50 m, with drainable porosity similar to available water content (AWC) at 0.25 and 0.75 m, but >60% higher than AWC at 1.50 m. Hydraulic conductivity immediately below the tilled layer in both continuously cropped soils and those after a ley pasture phase was shown to decline with increasing soil moisture content, although the rate of decline was much greater in continuously cropped soil. At moisture contents approaching the drained upper limit (pore water pressure = -100cm H2O), estimates of saturated hydraulic conductivity after a ley pasture were 3-5 times greater than in continuously cropped soil, suggesting much greater rates of deep drainage in the former when soils are moist. Hydraulic tensiometers and fringe capacitance sensors monitored during real and artificial rainfall events showed evidence of soils approaching saturation in the surface layers (top 0.30-0.40 m), but there was no evidence of soil moistures exceeding the drained upper limit (i.e. pore water pressures ≤ -100 cm H2O) in deeper layers. Recovery of applied soil water within the top 1.00-1.20 m of the profile during or immediately after rainfall events declined as the starting profile moisture content increased. These effects were consistent with very rapid rates of internal drainage. Sensors deeper in the profile were unable to detect this drainage due to either non-uniformity of conducting macropores (i.e. bypass flow) or unsaturated conductivities in deeper layers that far exceed the saturated hydraulic conductivity of the infiltration throttle at the bottom of the cultivated layer. Large increases in unsaturated hydraulic conductivities are likely with only small increases in water content above the drained upper limit. Further studies with drainage lysimeters and large banks of hydraulic tensiometers are planned to quantify drainage risk in these soil types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Movement rates of eastern king prawns, Melicertus plebejus (Hess), were estimated from historical and recent conventional tag-recapture information collected across eastern Australia. Data from three studies and 2,656 tag recaptures were used. Recaptured males and females both moved east–north-east in central Queensland and north–north-east in southern Queensland and New South Wales. Over a period of one year, the estimated transition matrix reflected the species strong northerly movement and the more complex longitudinal movement, showing a very high probability of eastern movement in central Queensland and almost negligible eastern or western movement in northern New South Wales. The high exchange probability between New South Wales and Queensland waters indicated that spatial assessment models with movement rates between state jurisdictions would improve the management of this single-unit stock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Movement rates of eastern king prawns, Melicertus plebejus (Hess), were estimated from historical and recent conventional tag-recapture information collected across eastern Australia. Data from three studies and 2,656 tag recaptures were used. Recaptured males and females both moved east-north-east in central Queensland and north-north-east in southern Queensland and New South Wales. Over a period of one year, the estimated transition matrix reflected the species strong northerly movement and the more complex longitudinal movement, showing a very high probability of eastern movement in central Queensland and almost negligible eastern or western movement in northern New South Wales. The high exchange probability between New South Wales and Queensland waters indicated that spatial assessment models with movement rates between state jurisdictions would improve the management of this single-unit stock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land-applied manures produce nitrous oxide (N2O), a greenhouse gas (GHG). Land application can also result in ammonia (NH3) volatilisation, leading to indirect N2O emissions. Here, we summarise a glasshouse investigation into the potential for vermiculite, a clay with a high cation exchange capacity, to decrease N2O emissions from livestock manures (beef, pig, broiler, layer), as well as urea, applied to soils. Our hypothesis is that clays adsorb ammonium, thereby suppressing NH3 volatilisation and slowing N2O emission processes. We previously demonstrated the ability of clays to decrease emissions at the laboratory scale. In this glasshouse work, manure and urea application rates varied between 50 and 150 kg nitrogen (N)/ha. Clay : manure ratios ranged from 1 : 10 to 1 : 1 (dry weight basis). In the 1-year trial, the above-mentioned N sources were incorporated with vermiculite in 1 L pots containing Sodosol and Ferrosol growing a model pasture (Pennisetum clandestinum or kikuyu grass). Gas emissions were measured periodically by placing the pots in gas-tight bags connected to real-time continuous gas analysers. The vermiculite achieved significant (P ≤ 0.05) and substantial decreases in N2O emissions across all N sources (70% on average). We are currently testing the technology at the field scale; which is showing promising emission decreases (~50%) as well as increases (~20%) in dry matter yields. This technology clearly has merit as an effective GHG mitigation strategy, with potential associated agronomic benefits, although it needs to be verified by a cost–benefit analysis.