5 resultados para Reaction mechanism
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish unambiguously between the three species in the genus Perna. Target regions were portions of two mitochondrial genes, cox1 and nad4, and the intergenic spacer between these that occurs in at least two Perna species. Based on interspecific sequence comparisons of the nad4 gene, a conserved primer has been designed that can act as a forward primer in PCRs for any Perna species. Four reverse primers have also been designed, based on nad4 and intergenic spacer sequences, which yield species-specific products of different lengths when paired with the conserved forward primer. A further pair of primers has been designed that will amplify part of the cox1 gene of any Perna species, and possibly other molluscs, as a positive control to demonstrate that the PCR is working.
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.
Resumo:
Proteases can catalyze both peptide bond cleavage and formation, yet the hydrolysis reaction dominates in nature. This presents an interesting challenge for the biosynthesis of backbone cyclized (circular) proteins, which are encoded as part of precursor proteins and require post-translational peptide bond formation to reach their mature form. The largest family of circular proteins are the plant-produced cyclotides; extremely stable proteins with applications as bioengineering scaffolds. Little is known about the mechanism by which they are cyclized in vivo but a highly conserved Asn (occasionally Asp) residue at the C terminus of the cyclotide domain suggests that an enzyme with specificity for Asn (asparaginyl endopeptidase; AEP) is involved in the process. Nicotiana benthamiana does not endogenously produce circular proteins but when cDNA encoding the precursor of the cyclotide kalata B1 was transiently expressed in the plants they produced the cyclotide, together with linear forms not commonly observed in cyclotide-containing plants. Observation of these species over time showed that in vivo asparaginyl bond hydrolysis is necessary for cyclization. When AEP activity was suppressed, either by decreasing AEP gene expression or using a specific inhibitor, the amount of cyclic cyclotide in the plants was reduced compared with controls and was accompanied by the accumulation of extended linear species. These results suggest that an AEP is responsible for catalyzing both peptide bond cleavage and ligation of cyclotides in a single processing event.
Resumo:
A multiplex real-time PCR was developed for the detection and differentiation of two closely related bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5). The multiplex real-time PCR combines a duplex real-time PCR that targets the DNA polymerase gene of BoHV-1 and BoHV-5 and a real-time PCR targeting mitochondrial DNA, as a house-keeping gene, described previously by Cawthraw et al. (2009). The assay correctly identified 22 BoHV-1 and six BoHV-5 isolates from the Biosecurity Sciences Laboratory virus collection. BoHV-1 and BoHV-5 were also correctly identified when incorporated in spiked semen and brain tissue samples. The detection limits of the duplex assay were 10 copies of BoHV-1 and 45 copies of BoHV-5. The multiplex real-time PCR had reaction efficiencies of 1.04 for BoHV-1 and 1.08 for BoHV-5. Standard curves relating Ct value to template copy number had correlation coefficients of 0.989 for BoHV-1 and 0.978 for BoHV-5. The assay specificity was demonstrated by testing bacterial and viral DNA from pathogens commonly isolated from bovine respiratory and reproductive tracts. The validated multiplex real-time PCR was used to detect and differentiate BoHV-1 and BoHV-5 in bovine clinical samples with known histories.
Resumo:
The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.