3 resultados para Rea, Walter

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A restriction analysis of PCR (PCR-REA) amplified apxIVA gene has been suggested as an alternative method for serotyping of Actinobacillus pleuropneumoniae by Jaglic et al. [Jaglic, Z., Svastova, P., Rychlik, I., Nedbalcova, K., Kucerova, Z., Pavlik, I., Bartos, M., 2004. Differentiation of Actinobacillus pleuropneumoniae by PCR-REA based on sequence variability of the apxIVA gene and by ribotyping. Vet. Microbiol. 103, 63-69]. The current study investigated whether this alternative method could distinguish between the reference strains of serovars 13-15 and the value of the method when applied to 47 field isolates representing serovars 1-3, 5, 7-9, 12 and 15 as well as non-typable isolates. The reference strains of serovars 13 and 14 had the same sized product after the apxIVA PCR, while the product for serovar 15 was of different size compared to all the other serovar reference strains. The CfoI digest profiles of the reference serovars 13 and 14 strains were different from each other and from all other serovars. The HpaII digest profiles of these two serovars were very similar to each other, but both were distinctively different from the other serovar profiles. The CfoI digest profile of serovar 15 strain was very similar to the serovars 3 and 12 strains except for two faint extra bands for serovar 15. The HpaII digest profiles of serovars 12 and 15 reference strains were identical. The PCR-REA method correctly recognized the serovar of 21 of 43 field isolates. It was concluded that the method was a useful additional tool to support, but could not replace, conventional serotyping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stenotaphrum secundatum (Walter) Kuntze, known as "St Augustinegrass" in the USA and "buffalo grass" in Australia, is a widely used turfgrass species in subtropical and warm temperate regions of the world. Throughout its range, S. secundatum encompasses a great deal of genetic diversity, which can be exploited in future breeding programs. To understand better the range of genetic variation in Australia, morphological-agronomic classification and DNA profiling were used to characterize and group 17 commercial cultivars and 18 naturalized genotypes collected from across Australia. Historically, there have been two main sources of S. secundatum in Austalia: one a reputedly sterile triploid race (the so-called Cape deme) from South Africa now represented by the Australian Common group naturalized in all Australian states; and the other a "normal" fertile diploid race naturalized north from Sydney along the NSW coast, which is referred to here as the Australian Commercial group because it has been the source of most of the new cultivars recently developed in Australia. Over the past 30 years, some US cultivars have also been introduced and commercialized; these are again "normal" fertile diploids, but from a group distinclty different from the Australian Commercial genotypes as shown by both DNA analysis and grouping based on 28 morphological-agronomic characteristics. The implications for future breeding within S. secundatum in Australia are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of plant growth conditions on concentrations of proteins, including allergens, in peanut (Arachis hypogaea L.) kernels are largely unknown. Peanuts (cv. Walter) were grown at five sites (Taabinga, Redvale, Childers, Bundaberg, and Kairi) covering three commercial growing regions in Queensland, Australia. Differences in temperature, rainfall, and solar radiation during the growing season were evaluated. Kernel yield varied from 2.3 t/ha (Kairi) to 3.9 t/ha (Childers), probably due to differences in solar radiation. Crude protein appeared to vary only between Kairi and Childers, whereas Ara h 1 and 2 concentrations were similar in all locations. 2D-DIGE revealed significant differences in spot volumes for only two minor protein spots from peanuts grown in the five locations. Western blotting using peanut-allergic serum revealed no qualitative differences in recognition of antigens. It was concluded that peanuts grown in different growing regions in Queensland, Australia, had similar protein compositions and therefore were unlikely to show differences in allergenicity.