6 resultados para Rapid detection
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Aims: The aim of this work was to develop a rapid molecular test for the detection of the Chlamydiaceae family, irrespective of the species or animal host. Methods and Results: The method described herein is a polymerase chain reaction targeting the 16S rRNA gene of the Chlamydiaceae family, and the results demonstrate that the test reacts with five reference Chlamydiaceae but none of the 19 other bacterial species or five uninfected animal tissues tested. The results also indicate the enhanced sensitivity of this test when compared with conventional culture or serology techniques. This is demonstrated through parallel testing of six real clinical veterinary cases and confirmatory DNA sequence analysis. Conclusions, Significance and Impact of the Study: This test can be used by veterinary diagnostic laboratories for rapid detection of Chlamydiaceae in veterinary specimens, with no restriction of chlamydial species or animal host. The test does not differentiate chlamydial species, and if required, speciation must be carried out retrospectively using alternate methods. However, for the purpose of prescribing therapy for chlamydiosis, this test would be an invaluable laboratory tool.
Resumo:
Mycotoxin contamination of Australian maize is neither common nor extensive, but has the capacity to seriously disrupt marketing. Low to moderate levels of aflatoxins and fumonisins can be widespread in some seasons, but zearalenone, nivalenol and deoxynivalenol are usually confined to small growing localities. Possible approaches to such situations were tested by an analysis of several case studies. It is concluded that communication and coordination across the industry, prediction and prevention of contamination, rapid detection and assessment of contamination, effective use of contaminated maize and breeding for resistance comprise a useful set of strategies for managing mycotoxins in maize.
Resumo:
A 5' Taq nuclease assay specific for Avibacterium paragallinarum was designed and optimized for use in diagnosing infectious coryza. The region chosen for assay design was one of known specificity for Av. paragallinarum. The assay detected Av. paragallinarum reference strains representing the three Page and the eight Kume serovars, and field isolates from diverse geographical locations. No cross-reactions were observed with other Avibacterium species, with other bacteria taxonomically related to Av. paragallinarum nor with bacteria and viruses likely to be present in swabs collected from suspected infectious coryza cases. The detection limit for the assay was 6 to 60 colony-forming units per reaction. Twenty-two out of 53 swabs collected from sick birds reacted in the 5' Taq nuclease assay, whereas Av. paragallinarum was not isolated from any of the swabs. All of the 22 swabs yielded other bacteria in culture. The presence of Av. paragallinarum in the swabs was also demonstrated by sequencing, thereby confirming the ability of the assay to detect Av. paragallinarum in the presence of other bacteria. The ability to quantify bacterial load in the swabs using the 5' Taq nuclease assay was demonstrated.
Resumo:
A 5′ Taq nuclease assay utilising minor groove binder technology and targeting the 16S rRNA gene was designed to detect Pasteurella multocida (the causative agent of fowl cholera) in swabs collected from poultry. The assay was first evaluated using pure cultures. The assay correctly identified four P. multocida taxonomic type strains, 18 P. multocida serovar reference strains and 40 Australian field isolates (17 from poultry, 11 from pigs and 12 from cattle). Representatives of nine other Pasteurella species, 26 other bacterial species (18 being members of the family Pasteurellaceae) and four poultry virus isolates did not react in the assay. The assay detected a minimum of approximately 10 cfu of P. multocida per reaction. Of 79 poultry swabs submitted to the laboratory for routine bacteriological culture, 17 were positive in the 5′ Taq nuclease assay, but only 10 were positive by culture. The other 62 swabs were negative for P. multocida by both 5′ Taq nuclease assay and culture. The assay is suitable for use in diagnosing fowl cholera, is more rapid than bacteriological culture, and may also have application in diagnosing P. multocida infections in cattle and pigs.
Resumo:
The ability of blocking ELISAs and haemagglutination-inhibition (HI) tests to detect antibodies in sera from chickens challenged with either Avibacterium (Haemophilus) paragallinarum isolate Hp8 (serovar A) or H668 (serovar C) was compared. Serum samples were examined weekly over the 9 weeks following infection. The results showed that the positive rate of serovar A specific antibody in the B-ELISA remained at 100% from the second week to the ninth week. In chickens given the serovar C challenge, the highest positive rate of serovar C specific antibody in the B-ELISA appeared at the seventh week (60% positive) and was then followed by a rapid decrease. The B-ELISA gave significantly more positives at weeks 2, 3, 7, 8 and 9 post-infection for serovar A and at week 7 post-infection for serovar C. In qualitative terms, for both serovar A and serovar C infections, the HI tests gave a lower percentage of positive sera at all time points except at 9 weeks post-infection with serovar C. The highest positive rate for serovar A HI antibodies was 70% of sera at the fourth and fifth weeks post-infection. The highest rate of serovar C HI antibodies was 20% at the fifth and sixth weeks post-infection. The results have provided further evidence of the suitability of the serovar A and C B-ELISAs for the diagnosis of infectious coryza.
Resumo:
A microplate assay was modified for the detection of antimicrobial activity in plant extracts. The aim was to develop an in vitro assay that could rapidly screen plant extracts to provide quantitative data on inhibition of microbial growth. A spectrophotometric assay using a microplate with serial dilutions of the plant extract and the bacteria was developed. Two bacteria, Staphylococcus aureus and Escherichia coli, were used for this study. Essential oils, oregano (Origanum vulgare) and lemon myrtle (Backhousia citriodora), and three active components carvacrol, thymol and citral were evaluated. The reproducibility of the assay was high, with correlation coefficients (r aureus and E. coli between 0.9321 and 0.9816. Similarly, r and 0.9814. This assay could also be used to measure antimicrobial activity in plant extracts which vary in pH and color.