21 resultados para Rachel Carson
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Chromolaena, or Siam weed, is a serious problem in several tropical and sub-tropical areas around the world. In our own region, it is a serious weed in New Guinea, East Timor and Indonesia and is also under an eradication regime in North Queensland. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and control of the weed. Biological control has been a major multinational initiative against this weed in recent years and these efforts are described in some detail. Interestingly agents have not been universally effective because of weed biotype differences and climate. Considerable success has been achieved in New Guinea, principally with the tephritid fly Cecidocares connex and by the efforts of Michael Day, Rachel McFadyen and Graham Donnelly from Alan Fletcher Research Station.
Resumo:
In February 2004, Redland Shire Council with help from a Horticulture Australia research project was able to establish a stable grass cover of seashore paspalum (Paspalum vaginatum) on a Birkdale park where the soil had previously proved too salty to grow anything else. Following on from their success with this small 0.2 ha demonstration area, Redland Shire has since invested hundreds of thousands of dollars in successfully turfing other similarly “impossible” park areas with seashore paspalum. Urban salinity can arise for different reasons in different places. In inland areas such as southern NSW and the WA wheatbelt, the usual cause is rising groundwater bringing salt to the surface. In coastal sites, salt spray or periodic tidal inundation can result in problems. In Redland Shire’s case, the issue was compacted marine sediments (mainly mud) dug up and dumped to create foreshore parkland in the course of artificial canal developments. At Birkdale, this had created a site that was both strongly acid and too salty for most plants. Bare saline scalds were interspersed by areas of unthrifty grass. Finding a salt tolerant grass is no “silver bullet” or easy solution to salinity problems. Rather, it buys time to implement sustainable long-term establishment and maintenance practices, which are even more critical than with conventional turfgrasses. These practices include annual slicing or coring in conjunction with gypsum/dolomite amendment and light topdressing with sandy loam soil (to about 1 cm depth), adequate maintenance fertiliser, weed control measures, regular leaching irrigation was applied to flush salts below the root zone, and irrigation scheduling to maximise infiltration and minimise run off. Three other halophytic turfgrass species were also identified, each of them adapted to different environments, management regimes and uses. These have been shortlisted for larger-scale plantings in future work.
Resumo:
This publication provides information on chemical, physical and biological aspects of soil, all of which contribute to a healthy soil environment for growing turfgrass.
Resumo:
Suitable for gaining some insights into important questions about the management of turf in dry times. Improve your product quality and avoid unnecessary losses. Can varieties help? How important are soils in conserving moisture and how do I measure my soil's condition? How can I make the best use of available water? Can water retaining amendments assist in establishing turf? Is recycled water a good option? Contains research results from turfgrass trials conducted by Queensland Government scientists for Queensland conditions.
Resumo:
The strategic objectives of Turf Australia (formerly the Turf Producers Association (TPA)) relating to water use in turf are to: • Source and collate information to support the case for adequate access to water for the Turf production and maintenance sectors and • Compile information generated into a convincing communication package that can be readily used by the industry in its advocacy programs (to government, regulators, media etc) More specifically, the turfgrass industry needs unbiased scientific evidence of the value of healthy grass in our environment. It needs to promote the use of adequate water even during drought periods to maintain quality turfgrass, which provides many benefits to the broader community including cooling the environment, saving energy and encouraging healthy lifestyles. The many environmental, social and health benefits of living turfgrass have been the subject of numerous investigations beyond the scope of this review. However further research is needed to fully understand the economic returns achievable by the judicious use of water for the maintenance of healthy turfgrass. Consumer education, backed by scientific evidence will highlight the “false economy” in allowing turfgrass to wither and die during conditions which require high level water restrictions. This report presents a review of the literature pertaining to research in the field of turf water use. The purpose of the review was to better understand the scope and nature of existing research results on turf water relations so that knowledge gaps could be identified in achieving the above strategic objectives of the TPA. Research to date has been found to be insufficient to compile a convincing communication package as described. However, identified knowledge gaps can now be addressed through targeted research. Information derived from targeted research will provide valuable material for education of the end user of turfgrass. Recommendations have been developed, based on the results of this desktop review. It was determined that future research in the field of turf irrigation needs to focus on a number of key factors which directly or indirectly affect the relationship between turfgrass and water use. These factors are: • Climate • Cultivar • Quality • Site use requirements • Establishment and management The overarching recommendation is to develop a strategic plan for turfgrass water relations research based around the five determinants of turf water use listed above. This plan should ensure research under these five categories is integrated into a holistic approach by which the consumer can be guided in species and/or cultivar choices as well as best management practices with respect to turfgrass water relations. Worsening drought cycles and limited supply of water for irrigation were the key factors driving every research project reviewed in this report. Subsidence of the most recent (or current) drought conditions in Australia should not be viewed by the turf industry as a reason to withdraw support or funding for research in this area. Drought conditions, limited domestic water availability and urban water restrictions will return in Australia albeit in 5, 10 or 20 years time and the turf industry has an opportunity to prepare for that time.
Resumo:
The aim of this project was to quantify differences between treated and untreated coir (coconut industrial residues) products and to identify differences in growth, yield and quality of cut flowers grown in different coir products. This has been brought about largely by the concern that some coir products, washed in low quality (saline) water may have detrimental effects on plant productivity and quality. There is concern in the flower production industry and among media suppliers, that lower quality products are favoured due to price alone, which as this project shows is a false economy. Specifically the project examined: • Differences in physical and chemical properties of treated and untreated coir along with another commonly used growing media in the flower industy; • Potential improvements in yield and quality of Gerbera (Gerbera jamesonii); • Potential differences in vase life of Gerbera as a result of the different growing media; and • Cost-benefit implications of treated (more expensive) coir substrate products versus untreated (less expensive) coir including any subsequent differences in yield and quality. By first examining the physical and some chemical properties of different coir substrates and other industry standard media, the researchers have been able to validate the concerns raised about the potential quality issues in coir based growing media. There was a great deal of variation in both the electrical conductivity and sodium contents. Physical properties were also variable as expected since manufacturers are able to target the specific physical preferences of plants through manipulation of the particle size distribution. A field trial was conducted under protected cropping practices in which three growing media were compared in terms of total productivity and also flower quality parameters such as stem length, flower diameter and vase life. The trial was a completely randomised design with the three growing media comprising treated coir discs, untreated coir discs and a pine bark coir mix. Four cultivars of Gerbera were assessed: Balance®; Carambole®; Dune® and Picobello®, all new products from Florist de Kwakel B.V., Denmark. Initial expansion from tissue culture was conducted at the Highsun Express Facility, Ormiston, Queensland. The trial included 12 replications of each cultivar in each media (a total of 144 plants) to ensure all data collected, and the derived conclusions were statistically rigorous. The coir supplied with no pre-treatment or buffering produced significantly less flowers than those grown in a pine bark coir mix or the pre-treated coir. Interestingly, the pine bark coir mix produced a greater number of flowers. However, the flowers produced in the pine bark coir mix were generally a shorter length stem. Productivity data, combined with flower quality data and component costs were all analysed through a cost/benefit economic model which showed that the greater revenue from better stem length outweighed the stem numbers, giving a cost benefit ratio of 2.58 for treated coir, 2.49 for untreated coir and 2.52 for pine bark coir mix. While this does not seem a large difference, when considering the number of plants a producer maintains can be upwards of 50,000 the difference in revenue would be, at a minimum $60,000 in this example. In conclusion, this project has found that there are significant effects on plant health, growth, yield and quality between those grown in treated and untreated coir. The outcome being growers can confidently invest in more expensive treated products with the assurance that benefits will outweigh initial cost. It is false economy to favour untreated coir products based on price alone. Producers should ensure they fully understand the production processes when purchasing growing media. Rather than targeting lower priced materials, it is recommended that quality be the highest priority in making this management decision. In making recommendations for future research and development it was important to consider conclusions from other researchers as well as those of the current project. It has been suggested that the media has greater longevity, which although not captured in this study could also lead to further cost efficiencies. Assessment of the products over a longer time period, and using a wider range of plant species are the major recommendations for further research to ensure greater understanding as to the importance in choosing the right growing media to meet specific needs.
Resumo:
Rice flower, an Australian native species, has been cultivated in appreciable quantities as a cut flower crop since 1991. Although the plant can be highly productive, achieving consistently high commercial yields can prove elusive. Rice Flower production guidelines for growers is essential reading for producers who would aspire to grow and market rice flower well. For anyone with an interest in new crop development, this book provides a valuable insight into the intricacies of growing an indigenous species commercially.
Resumo:
This project tested modified gillnets designed by commercial net fishers in the Queensland East Coast Inshore Finfish Fishery (ECIFF) to try and identify gears that would mitigate and/or improve interactions between fishing nets and Species of Conservation Interest (SOCI). The study also documents previously unrecognised initiatives by pro-active commercial net fishers that reflect a conservation-minded approach to their fishing practices, which is the opposite of what is perceived publicly. Between 2011 and 2014, scientists from James Cook University and the Queensland Department of Agriculture and Fisheries teamed with commercial fishers representing the Queensland Seafood Industry Association and the Moreton Bay Seafood Industry Association to conduct field trials of various modified net designs under normal fishery conditions. Trials were conducted in Moreton Bay (southern part of the fishery) and Bowling Green Bay (northern) and tested different net designs developed by fishers to improve the nature of interactions between net fishing gear and SOCI.
Resumo:
Assess establishment and management of salt tolerant turf grasses on salt affected parklands.
Resumo:
Quantifying surfactant interaction effects on soil moisture and turf quality.
Resumo:
Monitoring of soil moisture fluctuations under mulched and un-mulched native flowers will provide valuable information in assessing the crop water use and potential water savings associated with adoption of this practise. This information would be valuable in encouraging growers to adopt best management practises for sustainable flower production.
Resumo:
Service provision project to be undertaken by staff from the Department of Employment, Economic Development and Innovation (DEEDI) to the Flower Association of Queensland Inc. (FAQI) to fulfil FAQI's requirements under the South East Queensland - Irrigation Futures project.
Resumo:
The purpose of this proposal is to detail the proposed service provision project to be undertaken by staff from the Department of Employment, Economic Development and Innovation (DEEDI – formerly DPI&F) to the Flower Association of Queensland Inc (FAQI). FAQI to successfully fulfil FAQI’s requirements under the Rural Water Use Efficiency 4 project.
Resumo:
In the nursery industry, generic research conducted by government institutions is often not specific enough to be highly valued and adopted by the individual operator. Operators need practical solutions to their particular problems. Such problems almost invariably involve sets of conditions common to few other enterprises. This uniqueness reflects the almost infinite variation of options available in terms of species grown, media used, fertiliser, amendments and chemicals applied and the way water is supplied. The DOOR (Do Our Own Research) method advocates a relatively unexplored way of generating new, statistically sound research information in the nursery industry. The manual aims to enhance nursery operators' understanding and skills development in the following areas: critially evaluating opportunities and problems in the nursery environment, gathering relevant information, deriving and prioritising potential solutions to problems and opportunities, becoming familiar with the scientific method employed in testing potential solutions, carrying out statistically sound aand rigorous research, and developing recommendations that flow from the research information generated. The DOOR approach has application in a number of other industries and may provide important support at a time of declining research, development and extension investment by the public sector.
Resumo:
Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 2000. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2000. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of wildflowers. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.