8 resultados para RISK-ADAPTED TREATMENT
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Preputial prolapse is an obvious condition affecting bulls from many breeds. Unfortunately, the losses in production and welfare concerns associated with preputial prolapse can remain undetected for long periods of time in the extensive beef areas of northern Australia where the bulls are not inspected regularly. Thus, there is a critical need to identify the structural factors predisposing to preputial prolapse in young bulls so that they can be culled early. Despite there being no firm scientific evidence of an association between preputial eversion and preputial prolapse, it seems logical that the increased exposure of the sensitive prepuce as a consequence of preputial eversion may increase the risk of bulls developing preputial pathology, in particular preputial prolapse. This may be particularly relevant in Bos indicus bulls as they have a more pendulous sheath and thus eversion of the prepuce may be associated with a greater risk of injury to the prepuce compared to that in Bos taurus bulls. Further, studies of preputial eversion in Bos taurus bulls have concluded that there is an association between polledness and increased prevalence and severity (length of everted prepuce and duration of eversion) of preputial eversion due primarily to the absence or poor development of the caudal preputial muscles. No similar definitive work in Bos indicus bulls has been conducted and thus anatomical studies reported in this thesis were conducted to determine if a similar association occurred in Bos indicus bulls. A survey of a sample of large beef breeding herds in northern Australia found that preputial prolapse is a significant problem in Bos indicus and Bos indicus derived bulls and affected both young and older bulls. The importance of preputial prolapse confirmed the value of further research into the causes of this problem. A series of anatomical studies confirmed that preputial eversion in Bos indicus derived bulls was not more prevalent in polled bulls than horned bulls and was not associated with deficiency of the caudal preputial muscles as was established in Bos taurus bulls. An anatomical study of Bos indicus derived bulls with preputial prolapse found that preputial prolapse occurred in horned bulls of varying ages and these bulls did not have any evidence of deficiency in the caudal preputial muscles. However, preputial prolapse was observed in young polled bulls that had poorly developed or absent caudal preputial muscles. It was concluded that deficiency of the caudal preputial muscles in polled Bos indicus derived bulls may predispose to preputial prolapse at an early age, but no predisposing anatomical factors were found for horned Bos indicus derived bulls. In these studies, preputial eversion and preputial prolapse were found in horned Bos indicus derived bulls that did not have any preputial muscle deficiency and it was noted that preputial eversion was not related to the length of the prepuce. Further studies confirmed that preputial eversion was linearly and consistently associated with position of the glans penis within the sheath in Bos indicus derived bulls, and movement of the glans penis towards the preputial orifice consistently resulted in preputial eversion in these bulls. A method to objectively measure the relationship between movement of the glans penis within the sheath and preputial eversion was developed. Studies in humans have linked function of some abdominal muscles to function of the pelvic organs. This relationship was investigated in Bos indicus derived bulls to determine whether the function of specific abdominal muscles affected position of the penis in the sheath. Using the method developed to objectively measure the relationship between penis movement and preputial eversion, the abdominal muscles that potentially were associated with movement of the glans penis or preputial eversion were examined but no significant relationships were observed. In the anatomical study of Bos indicus derived bulls not affected with preputial prolapse a more pendulous sheath was associated with increased prevalence of preputial eversion. This relationship was confirmed for horned and polled bulls in the penis movement studies. Bos indicus derived bulls with more pendulous sheaths evert their prepuces more than bulls with less pendulous sheaths thus increasing the risk of damage to the prepuce either from the environment, other bulls, or from them inadvertently stepping on the everted prepuce when they get to their feet. Culling Bos indicus derived bulls with more pendulous sheaths should reduce the incidence of preputial eversion and possibly preputial prolapse. The anatomical study of Bos indicus derived bulls that did not have preputial prolapse demonstrates that there are herds of bulls where the polled bulls do not have any evidence of deficiency of the caudal preputial iv muscles. There is a need to develop a practical and cost effective test to identify polled Bos indicus bulls that have a deficiency in their caudal preputial muscles.
Resumo:
Recent incidents of mycotoxin contamination (particularly aflatoxins and fumonisins) have demonstrated a need for an industry-wide management system to ensure Australian maize meets the requirements of all domestic users and export markets. Results of recent surveys are presented, demonstrating overall good conformity with nationally accepted industry marketing standards but with occasional samples exceeding these levels. This paper describes mycotoxin-related hazards inherent in the Australian maize production system and a methodology combining good agricultural practices and the hazard analysis critical control point framework to manage risk.
Resumo:
This paper provides guidance on how to address the 49 questions of the Australian Weed Risk Assessment (WRA) system. The WRA was developed in Australia in 1999, and has since been widely adapted for different regions. As interest in implementation and results comparison has increased, the issue of consistency in answering and scoring the questions has become important. As a result, this guidance was developed during the 2007 International WRA Workshop. Suggestions on search methods, data sources and examples are also provided.
Resumo:
This joint DPI/Burdekin Shire Council project assessed the efficacy of a pilot-scale biological remediation system to recover Nitrogen (N) and Phosphorous (P) nutrients from secondary treated municipal wastewater at the Ayr Sewage Treatment Plant. Additionally, this study considered potential commercial uses for by-products from the treatment system. Knowledge gained from this study can provide directions for implementing a larger-scale final effluent treatment protocol on site at the Ayr plant. Trials were conducted over 10 months and assessed nutrient removal from duckweed-based treatments and an algae/fish treatment – both as sequential and as stand-alone treatment systems. A 42.3% reduction in Total N was found through the sequential treatment system (duckweed followed by algae/fish treatment) after 6.6 days Effluent Retention Time (E.R.T.). However, duckweed treatment was responsible for the majority of this nutrient recovery (7.8 times more effective than algae/fish treatment). Likewise, Total P reduction (15.75% reduction after 6.6 days E.R.T.) was twice as great in the duckweed treatment. A phytoplankton bloom, which developed in the algae/fish tanks, reduced nutrient recovery in this treatment. A second trial tested whether the addition of fish enhanced duckweed treatment by evaluating systems with and without fish. After four weeks operation, low DO under the duckweed blanket caused fish mortalities. Decomposition of these fish led to an additional organic load and this was reflected in a breakdown of nitrogen species that showed an increase in organic nitrogen. However, the Dissolved Inorganic Nitrogen (DIN: ammonia, nitrite and nitrate) removal was similar between treatments with and without fish (57% and 59% DIN removal from incoming, respectively). Overall, three effluent residence times were evaluated using duckweed-based treatments; i.e. 3.5 days, 5.5 days and 10.4 days. Total N removal was 37.5%, 55.7% and 70.3%, respectively. The 10.4-day E.R.T. trial, however, was evaluated by sequential nutrient removal through the duckweed-minus-fish treatment followed by the duckweed-plus-fish treatment. Therefore, the 70.3% Total N removal was lower than could have been achieved at this retention time due to the abovementioned fish mortalities. Phosphorous removal from duckweed treatments was greatest after 10.4-days E.R.T. (13.6%). Plant uptake was considered the most important mechanism for this P removal since there was no clay substrate in the plastic tanks that could have contributed to P absorption as part of the natural phosphorous cycle. Duckweed inhibited phytoplankton production (therefore reducing T.S.S) and maintained pH close to neutral. DO beneath the duckweed blanket fell to below 1ppm; however, this did not limit plant production. If fish are to be used as part of the duckweed treatment, air-uplifts can be installed that maintain DO levels without disturbing surface waters. Duckweed grown in the treatments doubled its biomass on average every 5.7 days. On a per-surface area basis, 1.23kg/m2 was harvested weekly. Moisture content of duckweed was 92%, equating to a total dry weight harvest of 0.098kg/m2/week. Nutrient analysis of dried duckweed gave an N content of 6.67% and a P content of 1.27%. According to semi-quantitative analyses, harvested duckweed contained no residual elements from the effluent stream that were greater than ANZECC toxicant guidelines proposed for aquaculture. In addition, jade perch, a local aquaculture species, actively consumed and gained weight on harvested duckweed, suggesting potential for large-scale fish production using by-products from the effluent treatment process. This suggests that a duckweed-based system may be one viable option for tertiary treatment of Ayr municipal wastewater. The tertiary detention lagoon proposed by the Burdekin Shire Council, consisting of six bays approximately 290 x 35 metres (x 1.5 metres deep), would be suitable for duckweed culture with minor modification to facilitate the efficient distribution of duckweed plants across the entire available growing surface (such as floating containment grids). The effluent residence time resulting from this proposed configuration (~30 days) should be adequate to recover most effluent nutrients (certainly N) based on the current trial. Duckweed harvest techniques on this scale, however, need to be further investigated. Based on duckweed production in the current trial (1.23kg/m2/week), a weekly harvest of approximately 75 000kg (wet weight) could be expected from the proposed lagoon configuration under full duckweed production. A benefit of the proposed multi-bay lagoon is that full lagoon production of duckweed may not be needed to restore effluent to a desirable standard under the present nutrient load, and duckweed treatment may be restricted to certain bays. Restored effluent could be released without risk of contaminating the receiving waterway with duckweed by evacuating water through an internal standpipe located mid-way in the water column.
Resumo:
The off-site transport of agricultural chemicals, such as herbicides, into freshwater and marine ecosystems is a world-wide concern. The adoption of farm management practices that minimise herbicide transport in rainfall-runoff is a priority for the Australian sugarcane industry, particularly in the coastal catchments draining into the World Heritage listed Great Barrier Reef (GBR) lagoon. In this study, residual herbicide runoff and infiltration were measured using a rainfall simulator in a replicated trial on a brown Chromosol with 90–100% cane trash blanket cover in the Mackay Whitsunday region, Queensland. Management treatments included conventional 1.5 m spaced sugarcane beds with a single row of sugarcane (CONV) and 2 m spaced, controlled traffic sugarcane beds with dual sugarcane rows (0.8 m apart) (2mCT). The aim was to simulate the first rainfall event after the application of the photosynthesis inhibiting (PSII) herbicides ametryn, atrazine, diuron and hexazinone, by broadcast (100% coverage, on bed and furrow) and banding (50–60% coverage, on bed only) methods. These events included heavy rainfall 1 day after herbicide application, considered a worst case scenario, or rainfall 21 days after application. The 2mCT rows had significantly (P < 0.05) less runoff (38%) and lower peak runoff rates (43%) than CONV rows for a rainfall average of 93 mm at 100 mm h−1 (1:20 yr Average Return Interval). Additionally, final infiltration rates were higher in 2mCT rows than CONV rows, with 72 and 52 mm h−1 respectively. This resulted in load reductions of 60, 55, 47, and 48% for ametryn, atrazine, diuron and hexazinone from 2mCT rows, respectively. Herbicide losses in runoff were also reduced by 32–42% when applications were banded rather than broadcast. When rainfall was experienced 1 day after application, a large percentage of herbicides were washed off the cane trash. However, by day 21, concentrations of herbicide residues on cane trash were lower and more resistant to washoff, resulting in lower losses in runoff. Consequently, ametryn and atrazine event mean concentrations in runoff were approximately 8 fold lower at day 21 compared with day 1, whilst diuron and hexazinone were only 1.6–1.9 fold lower, suggesting longer persistence of these chemicals. Runoff collected at the end of the paddock in natural rainfall events indicated consistent though smaller treatment differences to the rainfall simulation study. Overall, it was the combination of early application, banding and controlled traffic that was most effective in reducing herbicide losses in runoff. Crown copyright © 2012
Resumo:
Data from 9296 calves born to 2078 dams over 9 years across five sites were used to investigate factors associated with calf mortality for tropically adapted breeds (Brahman and Tropical Composite) recorded in extensive production systems, using multivariate logistic regression. The average calf mortality pre-weaning was 9.5% of calves born, varying from 1.5% to 41% across all sites and years. In total, 67% of calves that died did so within a week of their birth, with cause of death most frequently recorded as unknown. The major factors significantly (P < 0.05) associated with mortality for potentially large numbers of calves included the specific production environment represented by site-year, low calf birthweight (more so than high birthweight) and horn status at branding. Almost all calf deaths post-branding (assessed from n = 8348 calves) occurred in calves that were dehorned, totalling 2.1% of dehorned calves and 15.9% of all calf deaths recorded. Breed effects on calf mortality were primarily the result of breed differences in calf birthweight and, to a lesser extent, large teat size of cows; however, differences in other breed characteristics could be important. Twin births and calves assisted at birth had a very high risk of mortality, but <1% of calves were twins and few calves were assisted at birth. Conversely, it could not be established how many calves would have benefitted from assistance at birth. Cow age group and outcome from the previous season were also associated with current calf mortality; maiden or young cows (<4 years old) had increased calf losses overall. More mature cows with a previous outcome of calf loss were also more likely to have another calf loss in the subsequent year, and this should be considered for culling decisions. Closer attention to the management of younger cows is warranted to improve calf survival.
Resumo:
Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.
Resumo:
Thus the objectives of this study can be broadly categorised as follows:- Evaluate current practices adopted (e.g. litter pile-up) prior to re-use of litter for subsequent chicken cycles To establish pathogen die-off that occurs during currently adopted methods of in-shed treatment of litter To establish simple physical parameters to monitor this pathogen reduction and create an understanding of such reduction strategies to aid in-shed management of re-use litter To carry out studies to assess the potential of the re-used litter (once spread) to support pathogens during a typical chicken production cycle. To provide background data for the development of a simple code of practice for an in-shed litter pile-up process