15 resultados para RA-217
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus. Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high (L. erythropterus, 0.95 and L. malabaricus, 0.97), as was intraspecific sequence divergence, (L. erythropterus, 0.0-12.5% and L. malabaricus, 0.0-9.5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape (L. malabaricus) or between Kupang and Australian Timor Sea (L. erythropertus). The allozyme analyses revealed similar boundaries for L. erythropterus. Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.
Resumo:
Three indoor, sheeted bag-stack fumigations of paddy rice using aluminium phosphide were undertaken in Guangdong Province, southern China. We measured the effect of two types of sheeting (polyvinylchloride [PVC] or polyethylene [PE]) and two types of floor sealing (clips or fixing into a slot with a rubber pipe) on phosphine concentration and retention. The aim was to test the feasibility of retaining fumigant at a sufficient concentration for long enough to control known resistant insect pests. Each stack was pressure tested and phosphine concentrations measured daily during the fumigation. Cages of test insects in culture medium, including resistant and susceptible strains, were placed inside each stack and could be observed through the clear sheeting. Highest concentrations for the longest period were obtained in a PVC-covered stack that included a ground sheet and wall sheets sealed to the floor with rubber pipes. A similar PVC-covered stack sealed to the floor with clips instead of pipe did not retain gas as efficiently and required re-dosing. A PE-covered stack, with no ground sheet but also with wall sheets sealed to the floor with pipe, produced an acceptable fumigation. Susceptible Rhyzopertha dominica were controlled in 2 days and the most resistant strain in 15 days. Resistant Cryptolestes ferrugineus survived until day 21. The paddy was still free of insect infestation 7 months later when the bag-stack was opened to mill the rice. Pressure half-lives correlated with gas concentration and retention. Sorption appeared to be a major limiting factor, reducing potential fumigant dosage by about 50%. The trials demonstrated the feasibility of sealing bag-stacks to a standard high enough to control all known resistant strains.
Resumo:
Plugs or containerized plants can offer several advantages over traditional bare-rooted runner plants for strawberry (Fragaria x ananassa) production. Some of these benefits include easier planting, better establishment, fewer pests and diseases, and lower water use during plant establishment resulting in less leaching of applied fertilizers. Plugs also offer the potential for mechanical planting. In some areas of Europe and North America, plugs provide earlier production, greater productivity and larger fruit than runners. Research has also shown that the plants can be grown under short days and low temperatures to manipulate flower initiation and fruiting. Plugs are more expensive to buy compared with runner plants, and will only be adopted by industry if the extra costs are matched by convenience, resource conservation, increased fruiting and returns to producers. We investigated the productivity of 'Festival' and 'Sugarbaby' propagated as plugs (75 cm3 containers) and runners from Stanthorpe in southern Queensland (elevation of 872 m), and grown at Nambour on the Sunshine Coast (elevation 29 m). At planting, the plug plants weighed 0.8 ± 0.1 g DW compared with 53 ± 0.5 g DW for the runner plants. 'Sugarbaby' plugs were larger than 'Festival' plugs (33 ± 0.6 g versus 2.9 ± 0.6 g). The differences in growth at planting were maintained until the third week of July (day 94), with the plug plants weighing 17.8 ± 2.2 g, and the runner plants 21.4 ± 23 g. The proportion of plant dry matter allocated to the leaves increased over time from 59 to 70%, while the proportion allocated to the roots decreased from 21 to 10%. Harvest commenced after 60 days, with the plug plants yielding only 60% of the yields of the runner plants up until 8 August or day 109 (14.2 ± 1.4 g plant -1 week-1 versus 23.6 ± 1.9 g plant-1 week-1). 'Festival' (22.2 ± 2.0 g plant-1 week -1) had higher yields than 'Sugarbaby' (15.5 ± 1.5 g plant-1 week-1), even though plants of the latter were larger. Average fruit weight was 15.6 ± 0.3 g, with no effect of cultivar, plant type or harvest time. In other words, the differences in yield between the various treatments were due to differences in fruit set The lower yields of the plug plants probably reflect their small size at planting. Future research should determine whether plugs grown in larger cells (150 to 300 cm3 as in the USA and Europe) are more productive. Tips to be grown in larger containers should be harvested earlier than those for small cells to maximize root growth of the plug plant. This will probably extend the time required from harvest of the tips and potting them from the current four to five weeks, to eight to ten weeks.
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
The liana, hiptage (Hiptage benghalensis), is currently invading the wet tropics of northern Queensland and remnant bushland in south-eastern Queensland, Australia. Trials using seven herbicides and three application methods (foliar, basal bark, and cut stump) were undertaken at a site in north Queensland (158 700 hiptage plants ha−1). The foliar-applied herbicides were only effective in controlling the hiptage seedlings. Of the foliar herbicides trialed, dicamba, fluroxypyr, and triclopyr/picloram controlled >75% of the treated seedlings. On the larger plants, the cut stump applications were more effective than the basal bark treatments. Kills of >95% were obtained when the plants were cut close to ground level (5 cm) and treated with herbicides that were mixed with diesel (fluroxypyr and triclopyr/picloram), with water (glyphosate), or were applied neat (picloram). The costings for the cut stump treatment of a hiptage infestation (85 000 plants ha−1), excluding labor, would be $A14 324 ha−1 using picloram and $A5294 ha−1 and $A2676 ha−1, respectively, using glyphosate and fluroxypyr. Foliar application using dicamba for seedling control would cost $A1830 ha−1. The costs range from 2–17 cents per plant depending on the treatment. A lack of hiptage seeds below the soil surface, a high germinability (>98%) of the viable seeds, a low viability (0%) of 2 year old, laboratory-stored fruit, and a seedling density of 0.1 seedlings m−2 12 months after a control program indicate that hiptage might have a short-term seed bank. Protracted recolonization from the seed bank would therefore be unlikely after established seed-producing plants have been controlled.
Resumo:
A novel method for screening bacterial isolates for their potential to inhibit the growth of ruminal methanogenic Archaea was developed using a modification of the soft agar overlay technique, formally used for the isolation of lytic bacteriophages. This method may be used in the specific, hydrogen-rich conditions required for the growth of ruminal methanogenic Archaea.
Resumo:
This paper quantifies gaseous N losses due to ammonia volatilisation and denitrification under controlled conditions at 30 degrees C and 75% to 150% of Field Capacity (FC). Biosolids were mixed with two contrasting soils from subtropical Australia at a rate designed to meet crop N requirements for irrigated cotton or maize (i.e., equivalent to 180 kg N ha(-1)). In the first experiment, aerobically (AE) and anaerobically (AN) digested biosolids were mixed into a heavy Vertosol soil and then incubated for 105 days. Ammonia volatilization over 72 days accounted for less than 4% of the applied NH4-N but 24% (AN) to 29% (AE) of the total applied biosolids' N was lost through denitrification in 105 days. In the second experiment AN biosolids with and without added polyacrimide polymer were mixed with either a heavy Vertosol or a lighter Red Ferrosol and then incubated for 98 days. The N loss was higher from the Vertosol with 16-29% of total N applied versus the Red Ferrosol with 7-10% of total N applied, while addition of polymer to the biosolids increased N loss from 7 to 10% and from 16 to 29% in the Red Ferrosol and Vertosol, respectively. A major product from the denitrification process was N-2 gas, accounting for >90% of the emitted N gases from both experiments. Our findings demonstrate that denitrification could be a major pathway of gaseous N losses under warm and moist conditions.
Resumo:
Dingoes and other wild dogs (Canis lupus dingo and hybrids) are generalist predators that consume a wide variety of different prey species within their range. Little is known, however, of the diets of dingoes in north-eastern Australia where the potential for impacts by dingoes exists. Recently new information has been provided on the diets of dingoes from several sites in Queensland, Australia, significantly adding to the body of published knowledge on ecosystems within this region. Further information on the diet of dingoes in north-eastern Australia is added from 1460 scats collected from five sites, representing tropical savannahs, tropical offshore islands (and a matched mainland area), dry sclerophyll forests and peri-urban areas on the fringe of Townsville. Macropods, possums and bandicoots were found to be common prey for dingoes in these areas. Evidence suggested that the frequency of prey remains in scats can be an unreliable indicator of predation risk to potential prey and it was found that novel and unexpected prey species appear in dingo diets as preferred prey become unavailable. The results support the generalisation that dingoes prefer medium- to large-sized native prey species when available but also highlight the capacity for dingoes to exploit populations of both large and small prey species that might not initially be considered at risk from predation based solely on data on scats.
Resumo:
Molasses-based liquid supplements fed ad libitum are widely used to provide additional metabolisable energy, non-protein N (NPN) and other nutrients to grazing cattle, but it is often difficult to achieve target intakes of supplementary nutrients. Experiments examined the effects of increasing concentrations of phosphoric acid, urea and ammonium sulfate on the voluntary intake (VI) of molasses-based supplements offered ad libitum to heifers grazing tropical pastures. In Experiment 1, the VI of a supplement containing 78 g urea/kg and 26 g phosphoric acid/kg as-fed (M80U+PA) was 3.61 g DM/kg liveweight (LW) per day, and provided 181 mg NPN and 32.4 mg phosphorus (P)/kg LW per day. Increasing the urea content of the supplement to 137 g/kg (M140U+PA) or 195 g/kg (M200U+PA) reduced VI of supplement DM, NPN and P by up to 76%, 44% and 80%, respectively. VI of supplement containing ammonium sulfate (M140+AS+PA) was lower (P < 0.05) than that of M140U+PA supplement, and tended (P > 0.05) to be lower than that of M200U+PA supplement. In experiment 2, the VI by heifers of a supplement containing 200 g urea/kg (M200U) was 1.53 g supplement DM/kg LW per day, which provided 186 mg NPN/kg LW per day. Inclusion of 49 g phosphoric acid/kg as-fed in this supplement (M190U+50PA) reduced (P < 0.05) VI of supplement DM and NPN by 33% and 36%, respectively, while inclusion of 97 g phosphoric acid/kg (M180U+100PA) reduced (P < 0.05) VI of supplement DM and NPN by 43% and 48%, respectively. The M190U+50PA and M180U+100PA supplements provided 16 and 26 mg P/kg LW per day, respectively. Heifers not fed supplements gained 0.07 kg/day, and the M200U supplement increased (P < 0.05) LW gain to 0.18 kg/day. LW gain was further increased (P < 0.05) by the M190U+50PA to 0.28 kg/day, indicating a growth response to supplementary P. No adverse effects of the supplements on animal health were observed in any of the experiments. In conclusion, addition of urea and/or phosphoric acid to molasses supplements effectively reduced VI of supplementary DM, NPN and P, and in the circumstances of Experiment 2, both molasses-urea and P supplements increased heifer LW.
Resumo:
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol−1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol−1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust-infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.
Resumo:
Two preformed alk(en)ylresorcinols, 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol, were identified in ‘Kensington Pride’ mango fruit peel. The alk(en)ylresorcinols had antifungal activity against C. gloeosporioides, as determined from thin layer chromatography bioassays. Soil-applied activators of plant defence (Acibenzolar at 150 mg L-1, and soluble potassium silicate at 200 and 1000 mg L-1) did not influence concentrations of 5-n-heptadecenylresorcinol or 5-n-pentadecyl¬resorcinol in mango peel when applied 2 months after fruit set and one month later. Concentrations of both alk(en)ylresorcinols were high 2 months after fruit set but levels declined by 50% within 1 month (2 months before commercial harvest) and did not change significantly from commercial harvest until eating-ripe.
Resumo:
Sustainable management of native pastures requires an understanding of what the bounds of pasture composition, cover and soil surface condition are for healthy pastoral landscapes to persist. A survey of 107 Aristida/Bothriochloa pasture sites in inland central Queensland was conducted. The sites were chosen for their current diversity of tree cover, apparent pasture condition and soil type to assist in setting more objective bounds on condition ‘states’ in such pastures. Assessors’ estimates of pasture condition were strongly correlated with herbage mass (r = 0.57) and projected ground cover (r = 0. 58), and moderately correlated with pasture crown cover (r = 0.35) and tree basal area (r = 0.32). Pasture condition was not correlated with pasture plant density or the frequency of simple guilds of pasture species. The soil type of Aristida/Bothriochloa pasture communities was generally hard-setting, low in cryptogam cover but moderately covered with litter and projected ground cover (30–50%). There was no correlation between projected ground cover of pasture and estimated ground-level cover of plant crowns. Tree basal area was correlated with broad categories of soil type, probably because greater tree clearing has occurred on the more fertile, heavy-textured clay soils. Of the main perennial grasses, some showed strong soil preferences, for example Tripogon loliiformis for hard-setting soils and Dichanthium sericeum for clays. Common species, such as Chrysopogon fallax and Heteropogon contortus, had no strong soil preference. Wiregrasses (Aristida spp.) tended to be uncommon at both ends of the estimated pasture condition scale whereas H. contortus was far more common in pastures in good condition. Sedges (Cyperaceae) were common on all soil types and for all pasture condition ratings. Plants identified as increaser species were Tragus australianus, daisies (Asteraceae) and potentially toxic herbaceous legumes such as Indigofera spp. and Crotalaria spp. Pasture condition could not be reliably predicted based on the abundance of a single species or taxon but there may be scope for using integrated data for four to five ecologically contrasting plants such as Themeda triandra with daisies, T. loliiformis and flannel weeds (Malvaceae).
Resumo:
Some of the most productive taxa for forestry are interspecific F1 hybrids grown as exotics in the tropics and subtropics. Attributes of resilience, adaptability and vigour which engender the hybrids for wood production, may also exacerbate the risk they present from gene flow to native species gene pools or to local ecologies as weeds. To determine the biological and genetic factors that influence the extent of hybridisation, we examine the distribution and genealogy of wildlings surrounding plantings of locally-exotic Corymbia torelliana (Section Cadageria) near native C. henryi (Section Maculatae) in northern New South Wales. Our study showed pre-mating and pre- and post-zygotic barriers were incomplete, with in situ generation and natural establishment of both F1 hybrids (n = 3) and advanced generation hybrids under the disturbed conditions bordering native forest. As hybrids were located on alluvial flats exposed to frost, they also likely have an extended ecological range relative to native C. henryi. Despite the likely generation of large viable seed crops on F1 trees at the site over many years, establishment success and survival of advanced generation hybrids may be low, as only 5 immature and no mature advanced generation hybrids were identified. Propagation and genetic analysis of a seed crop from one F1 wildling showed early survival and vigour of seedlings in cultivation was high, and that at least for some F1 in some seasons, backcrossing to the recurrent native C. henryi parent is favoured (60%), whereas selfing (10%) and crossing with other F1 (30%) was less frequent. Transport of seed by stingless bees probably accounted for long distance dispersal from C. torelliana, but this mechanism does not appear to supplement gravity-dispersal of seed from the F1. Coupled with other evidence from studies of bee behaviour, controlled pollination in Corymbia sp., and long-term fitness in second generation eucalypt hybrids, we anticipate gene flow via pollen rather than seed will be the greater challenge for managing the risk of introgression of C. torelliana ancestry into native species from the planted F1 hybrid. If large sources of F1 pollen become available to compete with native pollen, gene flow will probably be frequent and hybrids may establish in disturbed conditions and in habitats beyond the ecological range of their native parent. Further study is needed to determine the degree to which outbreeding depression and poor survival inhibits on-going gene flow.