8 resultados para Quotas
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The appropriate frequency and precision for surveys of wildlife populations represent a trade-off between survey cost and the risk of making suboptimal management decisions because of poor survey data. The commercial harvest of kangaroos is primarily regulated through annual quotas set as proportions of absolute estimates of population size. Stochastic models were used to explore the effects of varying precision, survey frequency and harvest rate on the risk of quasiextinction for an arid-zone and a more mesic-zone kangaroo population. Quasiextinction probability increases in a sigmoidal fashion as survey frequency is reduced. The risk is greater in more arid regions and is highly sensitive to harvest rate. An appropriate management regime involves regular surveys in the major harvest areas where harvest rate can be set close to the maximum sustained yield. Outside these areas, survey frequency can be reduced in relatively mesic areas and reduced in arid regions when combined with lowered harvest rates. Relative to other factors, quasiextinction risk is only affected by survey precision (standard error/mean × 100) when it is >50%, partly reflecting the safety of the strategy of harvesting a proportion of a population estimate.
Resumo:
The Queensland Great Barrier Reef line fishery in Australia is regulated via a range of input and output controls including minimum size limits, daily catch limits and commercial catch quotas. As a result of these measures a substantial proportion of the catch is released or discarded. The fate of these released fish is uncertain, but hook-related mortality can potentially be decreased by using hooks that reduce the rates of injury, bleeding and deep hooking. There is also the potential to reduce the capture of non-target species though gear selectivity. A total of 1053 individual fish representing five target species and three non-target species were caught using six hook types including three hook patterns (non-offset circle, J and offset circle), each in two sizes (small 4/0 or 5/0 and large 8/0). Catch rates for each of the hook patterns and sizes varied between species with no consistent results for target or non-target species. When data for all of the fish species were aggregated there was a trend for larger hooks, J hooks and offset circle hooks to cause a greater number of injuries. Using larger hooks was more likely to result in bleeding, although this trend was not statistically significant. Larger hooks were also more likely to foul-hook fish or hook fish in the eye. There was a reduction in the rates of injuries and bleeding for both target and non-target species when using the smaller hook sizes. For a number of species included in our study the incidence of deep hooking decreased when using non-offset circle hooks, however, these results were not consistent for all species. Our results highlight the variability in hook performance across a range of tropical demersal finfish species. The most obvious conservation benefits for both target and non-target species arise from using smaller sized hooks and non-offset circle hooks. Fishers should be encouraged to use these hook configurations to reduce the potential for post-release mortality of released fish.
Resumo:
Management of the commercial harvest of kangaroos relies on quotas set annually as a proportion of regular estimates of population size. Surveys to generate these estimates are expensive and, in the larger states, logistically difficult; a cheaper alternative is desirable. Rainfall is a disappointingly poor predictor of kangaroo rate of increase in many areas, but harvest statistics (sex ratio, carcass weight, skin size and animals shot per unit time) potentially offer cost-effective indirect monitoring of population abundance (and therefore trend) and status (i.e. under-or overharvest). Furthermore, because harvest data are collected continuously and throughout the harvested areas, they offer the promise of more intensive and more representative coverage of harvest areas than aerial surveys do. To be useful, harvest statistics would need to have a close and known relationship with either population size or harvest rate. We assessed this using longterm (11-22 years) data for three kangaroo species (Macropus rufus, M. giganteus and M. fuliginosus) and common wallaroos (M. robustus) across South Australia, New South Wales and Queensland. Regional variation in kangaroo body size, population composition, shooter efficiency and selectivity required separate analyses in different regions. Two approaches were taken. First, monthly harvest statistics were modelled as a function of a number of explanatory variables, including kangaroo density, harvest rate and rainfall. Second, density and harvest rate were modelled as a function of harvest statistics. Both approaches incorporated a correlated error structure. Many but not all regions had relationships with sufficient precision to be useful for indirect monitoring. However, there was no single relationship that could be applied across an entire state or across species. Combined with rainfall-driven population models and applied at a regional level, these relationships could be used to reduce the frequency of aerial surveys without compromising decisions about harvest management.
Resumo:
Wildlife harvesting has a long history in Australia, including obvious examples of overexploitation. Not surprisingly, there is scepticism that commercial harvesting can be undertaken sustainably. Kangaroo harvesting has been challenged regularly at Administrative Appeals Tribunals and elsewhere over the past three decades. Initially, the concern from conservation groups was sustainability of the harvest. This has been addressed through regular, direct monitoring that now spans > 30 years and a conservative harvest regime with a low risk of overharvest in the face of uncertainty. Opposition to the harvest now continues from animal rights groups whose concerns have shifted from overall harvest sustainability to side effects such as animal welfare, and changes to community structure, genetic composition and population age structure. Many of these concerns are speculative and difficult to address, requiring expensive data. One concern is that older females are the more successful breeders and teach their daughters optimal habitat and diet selection. The lack of older animals in a harvested population may reduce the fitness of the remaining individuals; implying population viability would also be compromised. This argument can be countered by the persistence of populations under harvesting without any obvious impairment to reproduction. Nevertheless, an interesting question is how age influences reproductive output. In this study, data collected from a number of red kangaroo populations across eastern Australia indicate that the breeding success of older females is up to 7-20% higher than that of younger females. This effect is smaller than that of body condition and the environment, which can increase breeding success by up to 30% and 60% respectively. Average age of mature females in a population may be reduced from 9 to 6 years old, resulting in a potential reduction in breeding success of 3-4%. This appears to be offset in harvested populations by improved condition of females from a reduction in kangaroo density. There is an important recommendation for management. The best insurance policy against overharvest and unwanted side effects is not research, which could be never-ending. Rather, it is a harvest strategy that includes safeguards against uncertainty such as harvest reserves, conservative quotas and regular monitoring. Research is still important in fine tuning that strategy and is most usefully incorporated as adaptive management where it can address the key questions on how populations respond to harvesting.
Resumo:
For many fisheries, there is a need to develop appropriate indicators, methodologies, and rules for sustainably harvesting marine resources. Complexities of scientific and financial factors often prevent addressing these, but new methodologies offer significant improvements on current and historical approaches. The Australian spanner crab fishery is used to demonstrate this. Between 1999 and 2006, an empirical management procedure using linear regression of fishery catch rates was used to set the annual total allowable catch (quota). A 6-year increasing trend in catch rates revealed shortcomings in the methodology, with a 68% increase in quota calculated for the 2007 fishing year. This large quota increase was prevented by management decision rules. A revised empirical management procedure was developed subsequently, and it achieved a better balance between responsiveness and stability. Simulations identified precautionary harvest and catch rate baselines to set quotas that ensured sustainable crab biomass and favourable performance for management and industry. The management procedure was simple to follow, cost-effective, robust to strong trends and changes in catch rates, and adaptable for use in many fisheries. Application of such “tried-and-tested” empirical systems will allow improved management of both data-limited and data-rich fisheries.
Resumo:
Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.
Resumo:
An assessment of marine elapid snakes found 9% of marine elapids are threatened with extinction, and an additional 6% are Near Threatened. A large portion (34%) is Data Deficient. An analysis of distributions revealed the greatest species diversity is found in Southeast Asia and northern Australia. Three of the seven threatened species occur at Ashmore and Hibernia Reefs in the Timor Sea, while the remaining threatened taxa occur in the Philippines, Niue, and Solomon Islands. The majority of Data Deficient species are found in Southeast Asia. Threats to marine snakes include loss of coral reefs and coastal habitat, incidental bycatch in fisheries, as well as fisheries that target snakes for leather. The presence of two Critically Endangered and one Endangered species in the Timor Sea suggests the area is of particular conservation concern. More rigorous, long-term monitoring of populations is needed to evaluate the success of "conservation measures" for marine snake species, provide scientifically based guidance for determining harvest quotas, and to assess the populations of many Data Deficient species.
Resumo:
In multi-species fisheries managed under ITQs, the existence of joint production may lead to complex catch-quota balancing issues. Previous modelling and experimental research suggest that, in such fisheries, some fishers may benefit from the ability to trade packages of fishing quotas, rather than fulfil their quota needs by simultaneously bidding on separate single-species quota markets. This note presents evidence of naturally occurring package trades in a real fishery. Based on this evidence, we suggest that further empirical and modelling research is required on the potential and limitations of package quota trading in mixed fisheries managed with ITQs. © 2014.