25 resultados para Quality study
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The harvesting of kangaroos for human and pet food consumption has become a significant domestic and export industry. Kangaroo meat is low in fat and contains polyunsaturated fats which are known for their health benefits.
Resumo:
Diced cantaloupe flesh that was microbiologically sterile was prepared in order to study the physiological deterioration of fruit when stored under a range of controlled atmospheres at 4.5°C. Sterile fruit pieces were prepared by boiling whole melons for 3 min, then dicing aseptically. Storage atmospheres were in continuous flow and contained from 0 to 26% CO2 and 3.5 to 17% O2. Sensory assessments were carried out by a highly trained panel at 14-day intervals. Products that were acceptable for up to 28 days were obtained when the following 3 treatments were used: 6% CO2 and 6% O2; 9.5% CO2 and 3.5% O2; and 15% CO2 and 6% O2. Overall, treatment with 0, 19.5 or 26% CO2 (irrespective of O2 concn.) caused significant deterioration in sensory properties.
Resumo:
Maintenance of quality, such as firmness, is important during storage of fresh cut produce. This study compared the effects of I-MCP on the quality of tomato slices when intact tomatoes were treated with 1-MCP and then sliced, or tomatoes were sliced and the slices treated with I-MCP. In both instances the MCP treatment was 1 µL Lˉٰ at 20 ºC for 12 h. Tomato cv. 'Revolution' was harvested at the 'pink' stage of maturity, cut into 7-mm slices, and stored as vertical stacks in closed plastic containers at 5ºC for up to 7 days after the 1-MCP treatment. Exposure of intact tomatoes to I-MCP resulted in reduced ethylene production (31%) and firmer (22%) slices than when tomatoes were not I-MCP treated. The application of I-MCP prior to slicing of tomatoes appears a useful strategy to retain quality of stored tomato slices.
Resumo:
The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the fruit with 1 scan per spectrum, and modified partial least squares model development on a 720–950-nm window, pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical Rc2 of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%, respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM calibrations across new populations of fruit is documented in a companion study.
Resumo:
The intent of this study was to design, document and implement a Quality Management System (QMS) into a laboratory that incorporated both research and development (R&D) and routine analytical activities. In addition, it was necessary for the QMS to be easily and efficiently maintained to: (a) provide documented evidence that would validate the system's compliance with a certifiable standard, (b) fit the purpose of the laboratory, (c) accommodate prevailing government policies and standards, and (d) promote positive outcomes for the laboratory through documentation and verification of the procedures and methodologies implemented. Initially, a matrix was developed that documented the standards' requirements and the necessary steps to be made to meet those requirements. The matrix provided a check mechanism on the progression of the system's development. In addition, it was later utilised in the Quality Manual as a reference tool for the location of full procedures documented elsewhere in the system. The necessary documentation to build and monitor the system consisted of a series of manuals along with forms that provided auditable evidence of the workings of the QMS. Quality Management (QM), in one form or another, has been in existence since the early 1900's. However, the question still remains: is it a good thing or just a bugbear? Many of the older style systems failed because they were designed by non-users, fiercely regulatory, restrictive and generally deemed to be an imposition. It is now considered important to foster a sense of ownership of the system by the people who use the system. The system's design must be tailored to best fit the purpose of the operations of the facility if maximum benefits to the organisation are to be gained.
Resumo:
In this study, we examined the photosynthetic responses of five common seagrass species from a typical mixed meadow in Torres Strait at a depth of 5–7 m using pulse amplitude modulated (PAM) fluorometry. The photosynthetic response of each species was measured every 2 h throughout a single daily light cycle from dawn (6 am) to dusk (6 pm). PAM fluorometry was used to generate rapid light curves from which measures of electron transport rate (ETRmax), photosynthetic efficiency (α), saturating irradiance (Ek) and light-adapted quantum yield (ΔF/F′m) were derived for each species. The amount of light absorbed by leaves (absorption factor) was also determined for each species. Similar diurnal patterns were recorded among species with 3–4 fold increases in maximal electron rate from dawn to midday and a maintenance of ETRmax in the afternoon that would allow an optimal use of low light by all species. Differences in photosynthetic responses to changes in the daily light regime were also evident with Syringodium isoetifolium showing the highest photosynthetic rates and saturating irradiances suggesting a competitive advantage over other species under conditions of high light. In contrast Halophila ovalis, Halophila decipiens and Halophila spinulosa were characterised by comparatively low photosynthetic rates and minimum light requirements (i.e. low Ek) typical of shade adaptation. The structural makeup of each species may explain the observed differences with large, structurally complex species such as Syringodium isoetifolium and Cymodocea serrulata showing high photosynthetic effciciencies (α) and therefore high-light-adapted traits (e.g. high ETRmax and Ek) compared with the smaller Halophila species positioned lower in the canopy. For the smaller Halophila species these shade-adapted traits are features that optimise their survival during low-light conditions. Knowledge of these characteristics and responses improves our understanding of the underlying causes of changes in seagrass biomass, growth and survival that occur when modifications in light quantity and quality arise from anthropogenic and climatic disturbances that commonly occur in Torres Strait.
Resumo:
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.
Resumo:
Barley hull plays an important role in malt and feed quality and processing. In this study we measured the variation in hull con-tent along with other grain quality traits namely, kernel discolouration and degree of pre-harvest sprouting, in a single map-ping population. There were significant (p < 0.05) genetic as well as environment effects. In addition, heritability was calculated for hull content to be 29% and 47% for two years’ data. From the analysis, major QTL markers were identified in con-trolling the expression of hull content on chromosomes 2 (2H), and 6 (6H) with significant (P < 0.05) LOD scores of 5.4 and 3.46 respectively. Minor QTLs were identified on 1 (7H), 4 (4H), 5 (1H) and 7 (5H). The region at marker Bmac310 on 4(4H) could be associated with dormancy gene SD4. A number of the QTLs also coincided with regions for either kernel discolouration or preharvest sprouting resistance (dormancy). The results indicate that variation exists for hull content, which is influenced by both growing environment as well as genetically, although the genetic variance explained less than half of the total variance. Further, hull content also impacts on other grain quality attributes including dormancy, sprouting resistance and kernel appearance.
Resumo:
Barley (Hordeum vulgare) genotypes were sequenced for polymorphism in the hardness genes, these being the three hordoindoline (hin a, hin b1 and hin b2) genes. The variation in haplotype was determined by sequencing for single nucleotide polymorphisms (SNPs). Polymorphism between each gene was then compared to grain hardness (three methods), malt quality characteristics (hot water extract and friability) and cattle feed quality. Two haplotypes were found in a set of forty barley genotypes. For hin a, two alleles were present, namely hin a1 and hin a2. However, there was no specific hin a allele that was associated with grain hardness, malt and feed quality. Barley has two hin b genes, namely hin b1 and hin b2, and the genotypes tested here had one of two alleles for each gene. However, there were no obvious effects on hardness or quality from either of these hin b alleles. Unlike wheat, where a clear relationship has been demonstrated between a number of SNPs in the wheat hardness genes and quality (soft or hard wheat), there was no such relationship for barley. Despite the wide range in hardness, malt and feed quality, there were only two haplotypes for each of the hin a, hin b1 and hin b2 genes and there was no clear relationship between grain hardness, malt or feed quality. The genotypes used in this study demonstrated that there was a low level of polymorphism in hardness genes in current commercial varieties as well as breeding lines and these polymorphisms had no impact on quality.
Resumo:
Three drafts of Bos indicus cross steers (initially 178-216 kg) grazed Leucaena-grass pasture [Leucaena leucocephala subspecies glabrata cv. Cunningham with green panic (Panicum maximum cv. trichoglume)] from late winter through to autumn during three consecutive years in the Burnett region of south-east Queensland. Measured daily weight gain (DWGActual) of the steers was generally 0.7-1.1 kg/day during the summer months. Estimated intakes of metabolisable energy and dry matter (DM) were calculated from feeding standards as the intakes required by the steers to grow at the DWGActual. Diet attributes were predicted from near infrared reflectance spectroscopy spectra of faeces (F.NIRS) using established calibration equations appropriate for northern Australian forages. Inclusion of some additional reference samples from cattle consuming Leucaena diets into F.NIRS calibrations based on grass and herbaceous legume-grass pastures improved prediction of the proportion of Leucaena in the diet. Mahalanobis distance values supported the hypothesis that the F.NIRS predictions of diet crude protein concentration and DM digestibility (DMD) were acceptable. F.NIRS indicated that the percentage of Leucaena in the diet varied widely (10-99%). Diet crude protein concentration and DMD were usually high, averaging 12.4 and 62%, respectively, and were related asymptotically to the percentage of Leucaena in the diet (R2 = 0.48 and 0.33, respectively). F.NIRS calibrations for DWG were not satisfactory to predict this variable from an individual faecal sample since the s.e. of prediction were 0.33-0.40 kg/day. Cumulative steer liveweight (LW) predicted from F.NIRS DWG calibrations, which had been previously developed with tropical grass and grass-herbaceous legume pastures, greatly overestimated the measured steer LW; therefore, these calibrations were not useful. Cumulative steer LW predicted from a modified F.NIRS DWG calibration, which included data from the present study, was strongly correlated (R2 = 0.95) with steer LW but overestimated LW by 19-31 kg after 8 months. Additional reference data are needed to develop robust F.NIRS calibrations to encompass the diversity of Leucaena pastures of northern Australia. In conclusion, the experiment demonstrated that F.NIRS could improve understanding of diet quality and nutrient intake of cattle grazing Leucaena-grass pasture, and the relationships between nutrient supply and cattle growth.
Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids
Resumo:
To protect terrestrial ecosystems and humans from contaminants many countries and jurisdictions have developed soil quality guidelines (SQGs). This study proposes a new framework to derive SQGs and guidelines for amended soils and uses a case study based on phytotoxicity data of copper (Cu) and zinc (Zn) from field studies to illustrate how the framework could be applied. The proposed framework uses normalisation relationships to account for the effects of soil properties on toxicity data followed by a species sensitivity distribution (SSD) method to calculate a soil added contaminant limit (soil ACL) for a standard soil. The normalisation equations are then used to calculate soil ACLs for other soils. A soil amendment availability factor (SAAF) is then calculated as the toxicity and bioavailability of pure contaminants and contaminants in amendments can be different. The SAAF is used to modify soil ACLs to ACLs for amended soils. The framework was then used to calculate soil ACLs for copper (Cu) and zinc (Zn). For soils with pH of 4-8 and OC content of 1-6%, the ACLs range from 8 mg/kg to 970 mg/kg added Cu. The SAAF for Cu was pH dependant and varied from 1.44 at pH 4 to 2.15 at pH 8. For soils with pH of 4-8 and OC content of 1-6%, the ACLs for amended soils range from 11 mg/kg to 2080 mg/kg added Cu. For soils with pH of 4-8 and a CEC from 5-60, the ACLs for Zn ranged from 21 to 1470 mg/kg added Zn. A SAAF of one was used for Zn as it concentrations in plant tissue and soil to water partitioning showed no difference between biosolids and soluble Zn salt treatments, indicating that Zn from biosolids and Zn salts are equally bioavailable to plants.
Resumo:
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Resumo:
The variation in liveweight gain in grazing beef cattle as influenced by pasture type, season and year effects has important economic implications for mixed crop-livestock systems and the ability to better predict such variation would benefit beef producers by providing a guide for decision making. To identify key determinants of liveweight change of Brahman-cross steers grazing subtropical pastures, measurements of pasture quality and quantity, and diet quality in parallel with liveweight were made over two consecutive grazing seasons (48 and 46 weeks, respectively), on mixed Clitoria ternatea/grass, Stylosanthes seabrana/grass and grass swards (grass being a mixture of Bothriochloa insculpta cv. Bisset, Dichanthium sericeum and Panicum maximum var. trichoglume cv. Petrie). Steers grazing the legume-based pastures had the highest growth rate and gained between 64 and 142 kg more than those grazing the grass pastures in under 12 months. Using an exponential model, green leaf mass, green leaf %, adjusted green leaf % (adjusted for inedible woody legume stems), faecal near infrared reflectance spectroscopy predictions of diet crude protein and diet dry matter digestibility, accounted for 77, 74, 80, 63 and 60%, respectively, of the variation in daily weight gain when data were pooled across pasture types and grazing seasons. The standard error of the regressions indicated that 95% prediction intervals were large (+/- 0.42-0.64 kg/head.day) suggesting that derived regression relationships have limited practical application for accurately estimating growth rate. In this study, animal factors, especially compensatory growth effects, appeared to have a major influence on growth rate in relation to pasture and diet attributes. It was concluded that predictions of growth rate based only on pasture or diet attributes are unlikely to be accurate or reliable. Nevertheless, key pasture attributes such as green leaf mass and green leaf% provide a robust indication of what proportion of the potential growth rate of the grazing animals can be achieved.
Resumo:
Insights into the relative importance of various aspects of product quality can be provided through quantitative analysis of consumer preference and choice of fruit. In this study, methods previously used to establish taste preferences for kiwifruit (Harker et al., 2008) and conjoint approaches were used to determine the influence of three key aspects of avocado quality on consumer liking and willingness to purchase fruit: dry matter percentage (DM), level of ripeness (firmness) and internal defects (bruising). One hundred and seven consumers tasted avocados with a range of DM levels from ~20% (minimally mature) to nearly 40% (very mature), and at a range of fruit firmness (ripeness) stages (firm-ripe to soft-ripe). Responses to bruising, a common quality defect in fruit obtained from the retail shelf, were examined using a conjoint approach in which consumers were presented with photographs showing fruit affected by damage of varying severity. In terms of DM, consumers showed a progressive increase in liking and intent to buy avocados as the DM increased. In terms of ripeness, liking and purchase intent was higher in avocados that had softened to a firmness of 6.5 N or below (hand-rating 5). For internal defects, conjoint analysis revealed that price, level of bruising and incidence of bruising all significantly lowered consumers' future purchase decision, but the latter two factors had a greater impact than price. These results indicate the usefulness of the methodology, and also provide realistic targets for Hass avocado quality on the retail shelf.
Resumo:
The proposed simplified Integrated Sugar Production Process (ISPP) using membrane technology would allow the sugar industry to produce new product streams and higher quality mill sugar with increased sugar extraction efficiency. Membrane filtration technology has proven to be a technically sound process to increase sugar quality. However commercial viability has been uncertain partly because the benefits to crystallisation and sugar quality have not outweighed the increased processing cost. This simplified ISPP produces additional value-added liquid streams to make the membrane fractionation process more financially viable and improve the profitability of sugar manufacture. An experimental study used pilot scale membrane fractionation of clarified mill juice confirmed the technical feasibility of separating inorganic salt and antioxidant rich fractions from cane juice. The paper presents details on the compositions of the liquid streams along with their potential uses, values and challenges in getting these products out to market.