6 resultados para Qing Dynasty (China)
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Resistance to phosphine was characterised in strains of rice weevil, Sirophilus oryzae, and the psocids Liposcelis entomophila and L. decolor from China and Australia. Mixed-age cultures (containing all life stages) of insects were tested using a flow-through apparatus. The criterion of response was 'time to population extinction' defined as the exposure period, in days, at which 100% mortality of adults and no live progeny were achieved. Chinese S. oryzae took 11 and 7 days for population extinction at 200 and 700 ppm phosphine, respectively, compared with the Australian strain, which was controlled in 7 and 5 days, respectively. Similarly, the Chinese strains L. Enfornophila and L. decolor were generally more difficult to control than the corresponding Australian strains. The Chinese strains of L. decolor showed resistance levels stronger than any grain storage insect pest species so far detected in Australia. This research allows us to evaluate the likely significance of potential new resistance to the Australian grain industry and to prepare effective fumigation dosages and resistance management strategies to combat new strong resistances before they emerge here.
Resumo:
Quambalaria spp. include serious plant pathogens, causing leaf and shoot blight of Corymbia and Eucalyptus spp. In this study, a disease resembling Quambalaria leaf blight was observed on young Corymbia citriodora trees in a plantation in the Guangdong Province of China. Comparisons of rDNA sequence data showed that the causal agent of the disease is Q. pitereka. This study provides the first report of Quambalaria leaf blight from China, and it is also the first time that this pathogen has been found on trees outside the native range of Eucalypts.
Resumo:
Over the past two decades, the poultry sector in China went through a phase of tremendous growth as well as rapid intensification and concentration. Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 was first detected in 1996 in Guangdong province, South China and started spreading throughout Asia in early 2004. Since then, control of the disease in China has relied heavily on wide-scale preventive vaccination combined with movement control, quarantine and stamping out. This strategy has been successful in drastically reducing the number of outbreaks during the past 5 years. However, HPAIV H5N1 is still circulating and is regularly isolated in traditional live bird markets (LBMs) where viral infection can persist, which represent a public health hazard for people visiting them. The use of social network analysis in combination with epidemiological surveillance in South China has identified areas where the success of current strategies for HPAI control in the poultry production sector may benefit from better knowledge of poultry trading patterns and the LBM network configuration as well as their capacity for maintaining HPAIV H5N1 infection. We produced a set of LBM network maps and estimated the associated risk of HPAIV H5N1 within LBMs and along poultry market chains, providing new insights into how live poultry trade and infection are intertwined. More specifically, our study provides evidence that several biosecurity factors such as daily cage cleaning, daily cage disinfection or manure processing contribute to a reduction in HPAIV H5N1 presence in LBMs. Of significant importance is that the results of our study also show the association between social network indicators and the presence of HPAIV H5N1 in specific network configurations such as the one represented by the counties of origin of the birds traded in LBMs. This new information could be used to develop more targeted and effective control interventions.
Resumo:
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm 615 cm, 25 cm 617 cm, 25 cm 619 cm, 25 cm 621 cm, and 25 cm 623 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm615 cm to 25 cm623 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm617 cm to 25 cm623 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm 617 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm617 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice
Resumo:
Forest recovery has been extensively evaluated using plant communities but fewer studies have been conducted on soil fauna. This study reports the status of soil nematode communities during natural re-establishment after deforestation in a subtropical forest in southwestern China. Soil nematode communities of two secondary succession stages, shrub-grassland and secondary forest, were compared with those of virgin forest. Shrub-grassland had higher herbivore relative abundance but lower fungivore and bacterivore relative abundance than forests. Between secondary and virgin forest, the latter had higher abundance of bacterivores. Shrub-grassland had lower nematode diversity, generic richness, maturity index and trophic diversity index than virgin forest, whereas there were no differences in these indices between secondary forest and virgin forest. The small differences in nematode community structures between secondary forest and virgin forest suggest that soil nematode communities recovered to a level close to that of the undisturbed forest after up to 50 years of natural succession.
Resumo:
The black rot disease of Vitis species and other host genera of Vitacease is caused by Phyllosticta ampelicida and allied taxa which is considered to be a species complex. In this paper, we introduce four new species of Phyllosticta, including two from the P. ampelicida complex, based on a polyphasic characterization including disease symptoms and host association, morphology, and molecular phylogeny. The phylogenetic analysis was conducted based on the ribosomal internal transcribed spacer (ITS) region and a combined multi-locus alignment of the ITS, actin (ACT), partial translation elongation factor 1-alpha (TEF-1), and glyceraldehydes 3-phosphate dehydrogenase (GPDH) gene regions. Our study confirms the phylogenetic distinctions of the four new species, as well as their phenotypic differences with known species in the genus.