8 resultados para Prunus myrtifolia
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The pathogenicity of three isolates of Alternaria alternata from Backhousia myrtifolia leaves was characterised and compared. Isolate BRIP 52222 was virulent compared to isolates BRIP 52223 and BRIP 52221. A comparison of inoculation methods showed that abrasion was more effective at establishing an infection than puncture wounding. Koch's postulates were assessed to confirm the pathogenicity of A. alternata on B. myrtifolia foliage and floral tissues using a conidial suspension of the most virulent isolate. Sporulation was triggered by incubating A. alternata (BRIP 52222) at 28 degrees C for 10 d under alternating 12 h black-light/12 h dark conditions on half-strength potato dextrose agar (PDA). In contrast, incubation of A. alternata under continuous black-light on either half- or full-strength PDA did not yield conidia. Host symptoms caused by inoculation with the pathogen included a brown-black discolouration of both foliage and floral tissues. Microscopic examination of cellular structures suggested that perturbation of oil glands may contribute to the tissue discolouration in B. myrtifolia caused by A. alternata infection. Oil gland structures can be disrupted during an active A. alternata infection, causing the leakage of essential oil followed by discolouration.
Resumo:
Diachasmimorpha kraussii is a larval parasitoid of dacine fruit flies. Host utilisation behaviour, including field foraging behaviour, is poorly known in this species. The diurnal foraging behaviour of D. kraussii and one of its common hosts, Bactrocera tryoni, in a nectarine orchard was concurrently recorded. Observations of mating, resting, feeding and oviposition were taken two-hourly on 42 trees, commencing at 07:00 h and terminating at 17:30 h, for 17 days. Resting and oviposition were common events within the orchard for both species, while mating behaviours were not recorded in the orchard for either species. Feeding was not observed for D. kraussii and was rare for B. tryoni. At the level of the individual tree there was a very weak, but significant correlation between parasitoid and fly abundance over a day, but when broken down to the individual observation periods the correlations were absent, or were weakly significant in an inconsistent manner (i.e. sometimes positively correlated, sometimes negatively correlated). At the orchard level, abundance of the parasitoid was not correlated with adult fly abundance. Results suggest that D. kraussii forage independently to adult B. tryoni, a result consistent with a prediction that their foraging is largely driven by larval or plant damage cues.
Resumo:
Previous reviews of plum phytochemical content and health benefits have concentrated on the European plum, Prunus domestica L.. However, the potential bioactivity of red and dark red fleshed Japanese plum, Prunus salicina Lindl., so called blood plums, appears to warrant a significant increase in exposure as indicated in a recent review of the whole Prunus genus. Furthermore, Japanese plums are the predominate plum produced on an international basis. In this review the nutrient and phytochemical content, breeding programs, horticultural practice, post harvest treatment and processing as well as bioactivity (emphasizing in vivo studies) of Japanese plum are considered with a focus on the anthocyanin content that distinguishes the blood plums.
Resumo:
This work evaluated the following aspects of the use of exclusion netting in low chill stone fruit: the efficacy of protection from fruit fly for this highly susceptible crop; the effects on environmental factors; and the effects on crop development. Concurrently, an economic viability study on the use of exclusion netting was undertaken. The trial site was a 0.6-ha block of low chill stone fruit at Nambour, south-east Queensland, Australia. In this area, populations of Queensland fruit fly (Bactrocera tryoni) are known to be substantial, particularly in spring and summer. The trial block contained healthy 4-year-old trees as follows: 96 peach trees (Prunus persica cv. Flordaprince) and 80 nectarine trees (40 P. persica var. nucipersica cv. White Satin and 40 P. persica var. nucipersica cv. Sunwright). Exclusion netting was installed over approximately half of the block in february 2001. The net was a UV-stabilized structural knitted fabric made from high-density polyethylene yarn with a 10-year prorated UV degradation warranty. The results demonstrated the efficacy of exclusion netting in the control of fruit flies. Exclusion netting increased maximum temperatures by 4.4 deg C and decreased minimum temperatures by 0.5 deg C. Although exclusion netting reduced irradiance by approximately 20%, it enhanced fruit development by 7-10 days and improved fruit quality by increasing sugar concentration by 20-30% and colour intensity by 20%.
Resumo:
In recent years, there has been intense interest in the potential health benefits of dietary derived plant polyphenols and antioxidants. A new variety of Prunus salicina, Queen Garnet plum (QGP), was developed as a high anthocyanin, high antioxidant plum, in a Queensland Government breeding program. Following consumption of 400 mL QGP juice (QGPJ; 1,117 mg anthocyanins) by two healthy male subjects, QGP anthocyanins (cyanidin-3-glucoside and cyanidin-3-rutinoside) were excreted mainly as methylated and glucuronidated metabolites in urine (0.5% of the ingested dose within 24 h). Furthermore, QGPJ intake resulted in a threefold increase in hippuric acid excretion (potential biomarker for total polyphenols intake and metabolite), an increased urinary antioxidant capacity and a decreased malondialdehyde excretion (biomarker for oxidative stress) within 24 h as compared with the polyphenol-/antioxidant-free control. Results from this pilot study suggest that metabolites, and not the native QGP anthocyanins/polyphenols, are most likely the bioactive compounds in vivo.
Resumo:
While plums are traditionally bred for fresh fruit traits such as size, sweetness, yield and disease resistance the Queensland Government breeding program for Japanese plum ( Prunus salicina Lindl.) also selected for anthocyanin content to develop a new plum selection named 'Queen Garnet'. When ripe or overripe, it has a near black skin and deep red flesh colour, which when combined, result in exceptionally high anthocyanin content, reaching up to 277 mg/100 g fruit. The skin fraction contributes 36-66% of the total anthocyanin content of fruit. The plum is now being commercially grown to be processed into a range of functional products from food colourants to premium health products. These are sold on the basis of anthocyanin and antioxidant content. Protocols for increasing anthocyanin content have therefore been researched to maximise the total anthocyanin yield rather than fresh fruit weight and taste. The principal approach is through selective harvest of overripe plums high in colour, although post-harvest storage at 21°C results in further anthocyanin synthesis. Modified processing is also required to ensure recovery of anthocyanins from the skin fraction. The plum products have entered testing for assessing health properties beginning with an initial proof of in vivo bioavailability of the anthocyanins.
Resumo:
In recent years there has been increasing consumer interest in the potential health benefits of dietary derived phytochemicals such as polyphenols (including anthocyanins and flavonols) and carotenoids. A new variety of Japanese plum (Prunus salicina Lindl.), named Queen Garnet (QG), was developed as a high anthocyanin plum in a Queensland (Australia) Government breeding program and may be attractive to consumers, but knowledge of other phytochemical content, and bioaccessibility, is currently limited. As a result, the present study examined (1) the impact of harvest date on anthocyanins, quercetin glycosides and carotenoids in Queen Garnet and another red fleshed commercial Japanese plum variety, Black Diamond (BD), (2) the content of bound phenolics in plum fruit and (3) the in vitro bioaccessibility and release of these phytochemicals as an initial measure to predict their potential bioavailability. For both QG and BD, the last harvest resulted in the highest anthocyanin content in peel, flesh and whole fruit, whereas no significant effects could be observed for quercetin glycosides, and total carotenoids decreased over time. The highest content of bound phenolics (30% of total amount) could be found in BD flesh. Between 53% and 59% of quercetin glycosides and anthocyanins were released from QG after the gastric and small intestinal digestion procedure, whereas the release of carotenoids ranged between 4–6%. A relative high release of anthocyanins and quercetin glycosides could be observed from QG which may result in a higher gastro-intestinal absorption rate of these compounds. However, follow-up studies (clinical trials) are warranted to investigate the in vivo bioavailability and subsequently biological activity of QG.
Resumo:
White nectarines (Prunus persica var. nucipersica) were fumigated with methyl bromide (MB) at a nominal treatment dose of 18 g m-3 at 18°C for 5 h and 30 min as a quarantine disinfestation treatment against Bactrocera tryoni, the Queensland fruit fly. Three large scale trials were conducted against each of the four immature lifestages, eggs and first, second and third instars. There were no survivors from the estimated 43,614 eggs, 41,873 first instars, 41,345 second instars and 33,549 third instars treated, thereby resulting in an efficacy of GROTERDAN99.99% mortality at the 95% confidence level for each lifestage. Of the 12 trials reported herein, the highest concentration of MB, sampled from the chamber headspace analysed by gas chromatography, was 18.7 g m-3. The maximum chamber temperature from 5 min readings was 19.7°C and the maximum fruit core temperature was 19.5°C. The treatment time for all trials was exactly 5.5 h. Thus the recommended treatment dose to disinfest nectarines from B. tryoni is 19.0 g m-3 MB at 20.0°C for 5.5 h. Fruit quality trials were conducted on white nectarines at three combinations of treatment parameters: 15 g m-3 MB at 19°C for 5.25 h; 18 g m-3 MB at 19°C for 5.5 h and 21 g m-3 MB at 19°C for 5.5 h. The fruit were stored at 0, 4 and 8 days at 4°C and 8 days at 4°C followed by 4 d at 22°C. They were then were assessed for skin colour, flesh colour, skin defects, flesh defects, fruit weight loss, flesh firmness, total soluble solids, titratable acidity and rots. There was no significant difference between untreated control and MB treated fruits in any of the parameters measured. Thus the treatments did not have adverse effects on fruit quality.