2 resultados para Proxy Credential
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The primary aim of this study was to determine the relationship between telomere length and age in a range of marine invertebrates including abalone (Haliotis spp) oysters (Saccostrea glomerata), spiny lobsters (Sagmariasus verreauxi formerly Jasus verreauxi and Jasus edwardsii) and school prawns (Metapenaeus macleayi). Additionally, this relationship was studied in a vertebrate organism using the freshwater fish Silver perch (Bidyanus bidyanus). Telomere length differences between tissues were also examined in some species such as Saccostrea glomerata, Sagmariasus verreauxi and Bidyanus bidyanus. In some cases cultured specimens of known age were used and this is quoted in the spreadsheets. For other wild-caught specimens where age was not known, size was used as a proxy for age. This may be a broad size class, or be determined by shell size or carapace length depending on the organism. Each spreadsheet contains raw data of telomere length estimates from Terminal Restriction Fragment Assays (TRF) for various individuals of each species including appropriate details such as age or size and tissue. Telomere length estimates are given in base pairs (bp). In most cases replicate experiments were conducted on groups of samples three times but on a small number of occasions only two replicate experiments were conducted. Further description of the samples can be found in final report of FRDC 2007/033. The arithmetic average for each individual (sample ID) across the two or three replicate experiments is also given. Bidyanus bidyanus (SilverPerch) Two sheets are contained within. a) Comparison of telomere length between different tissues (heart, liver and muscle) within the three year old age class - two replicate experiments were conducted. b) Comparison of telomere length between fish of different but known ages (0.25, 1, 2, and 3 years old) in each of three tissues, heart, liver and muscle – three replicate experiments were conducted per tissue. Haliotis spp (Abalone species) Three species were tested. H. asinina Telomere length was compared in two age classes-11 month and 18 month old abalone using muscle tissue from the foot. Within gel-variation was also estimated using a single sample run three times on one gel (replicate experiment). H. laevigata x H. rubra hybrids Telomere length was compared in three known age classes – two, three and four years old using muscle tissue from the foot. H. rubra Telomere length was compared in a range of different sized abalone using muscle tissue from the foot. Shell size is also given for each abalone Saccostrea glomerata Three sheets are contained within the file. a) Samples came from Moreton Bay Queensland in 2007. Telomere length was compared in two tissues (gill and mantle) of oysters in three age groups (1, 3 and 4 years) b) Samples came from Moreton Bay Queensland in 2009. Telomere length was compared in three age classes using DNA from gill tissue only c) Samples came from Wallis Lake, New South Wales. Telomere length was estimated from whole body minus the shell from 1 year old oysters, gill tissue of 3 age classes (1.5 years, 3 and 4 years), mantle tissue of two age classes (3 and 4 years). Sagmariasus verreauxi (formerly Jasus verreauxi) Telomere length was estimated from abdomen tissue of puerulus, gill and muscle tissue of 3 year old, large and very large size classes of lobsters. Jasus edwardsii Telomere length was measured in two size classes of lobsters- adults of varying sizes using muscle tissue and puerulus using tissues from the abdomen minus the exoskeleton. Metapenaeus macleayi Telomere length was measured in three size classes of school prawns adults. Muscle tissue was used, minus the exoskeleton.
Resumo:
Water availability is a major limiting factor for wheat (Triticum aestivum L.) in rain-fed agricultural systems worldwide. Root architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root traits in wheat breeding programs has been largely limited due to the lack of suitable phenotyping methods. The aim of this research was to develop a low-cost high-throughput phenotyping method to facilitate selection for desirable root traits. We developed a method to assess ‘seminal root angle’ and ‘seminal root number’ in seedlings – two proxy traits associated to root architecture of mature wheat plants (1). The method involves measuring the angle between the first pair of seminal roots and the number of roots of wheat seedlings grown in transparent pots (Figure 1). Images captured at 5 to 10 days after sowing are analyzed to calculate seminal root angle and number. Performing this technique under “speed breeding” conditions (plants grown at a density of 600 plants / m2, under controlled temperature and constant light) allows the selection based on the desired root traits of up to 5 consecutive generations within 12 months. Alternatively, when focusing only on germplasm screening, up to 52 successive phenotypic assays can be conducted within 12 months. This approach has been shown to be highly reproducible, it requires little resource (time, space, and labour) and can be used to rapidly enrich breeding populations with desirable alleles for narrow root angle and a high number of seminal roots to indirectly target the selection of deeper root system with higher branching at depth. Such root characteristics are highly desirable in wheat to cope with the climate model projections, especially in summer rainfall dominant regions including some Australian, Indian, South American and African cropping regions, where winter crops mainly rely on deep stored water.