4 resultados para Proteolytic Cascade
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations.
Resumo:
INTRODUCTION:Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection.RESULT:Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade.CONCLUSIONS:These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control.
Resumo:
Introduction Many prey species around the world are suffering declines due to a variety of interacting causes such as land use change, climate change, invasive species and novel disease. Recent studies on the ecological roles of top-predators have suggested that lethal top-predator control by humans (typically undertaken to protect livestock or managed game from predation) is an indirect additional cause of prey declines through trophic cascade effects. Such studies have prompted calls to prohibit lethal top-predator control with the expectation that doing so will result in widespread benefits for biodiversity at all trophic levels. However, applied experiments investigating in situ responses of prey populations to contemporary top-predator management practices are few and none have previously been conducted on the eclectic suite of native and exotic mammalian, reptilian, avian and amphibian predator and prey taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of sympatric prey populations to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Results Prey populations were almost always in similar or greater abundances in baited areas. Short-term prey responses to baiting were seldom apparent. Longer-term prey population trends fluctuated independently of baiting for every prey species at all sites, and divergence or convergence of prey population trends occurred rarely. Top-predator population trends fluctuated independently of baiting in all cases, and never did diverge or converge. Mesopredator population trends likewise fluctuated independently of baiting in almost all cases, but did diverge or converge in a few instances. Conclusions These results demonstrate that Australian populations of prey fauna at lower trophic levels are typically unaffected by top-predator control because top-predator populations are not substantially affected by contemporary control practices, thus averting a trophic cascade. We conclude that alteration of current top-predator management practices is probably unnecessary for enhancing fauna recovery in the Australian rangelands. More generally, our results suggest that theoretical and observational studies advancing the idea that lethal control of top-predators induces trophic cascades may not be as universal as previously supposed.
Resumo:
Top-predators can sometimes be important for structuring fauna assemblages in terrestrial ecosystems. Through a complex trophic cascade, the lethal control of top-predators has been predicted to elicit positive population responses from mesopredators that may in turn increase predation pressure on prey species of concern. In support of this hypothesis, many relevant research papers, opinion pieces and literature reviews identify three particular case studies as supporting evidence for top-predator control-induced release of mesopredators in Australia. However, many fundamental details essential for supporting this hypothesis are missing from these case studies, which were each designed to investigate alternative aims. Here, we re-evaluate the strength of evidence for top-predator control-induced mesopredator release from these three studies after comprehensive analyses of associated unpublished correlative and experimental data. Circumstantial evidence alluded to mesopredator releases of either the European Red Fox (Vulpes vulpes) or feral Cat (Felis catus) coinciding with Dingo (Canis lupus dingo) control in each case. Importantly, however, substantial limitations in predator population sampling techniques and/or experimental designs preclude strong assertions about the effect of lethal control on mesopredator populations from these studies. In all cases, multiple confounding factors and plausible alternative explanations for observed changes in predator populations exist. In accord with several critical reviews and a growing body of demonstrated experimental evidence on the subject, we conclude that there is an absence of reliable evidence for top-predator control-induced mesopredator release from these three case studies. Well-designed and executed studies are critical for investigating potential top-predator control-induced mesopredator release.